Hardware documentation for CX1020 Embedded PC

CX1020-0xxx
CX1020-Nxxx
CX1020-A001

version: 1.6
date: 2006-09-06
Table of Contents

CX1020 Hardware Documentation

1. Foreword
 Notes on the documentation
 Safety instructions 4
 Documentation issue status 6

2. Product overview
 Appropriate use 7
 System overview 8
 Basic modules 11
 Technical data 11
 Configurations 12
 Connections 13
 Battery compartment 16
 Compact Flash slot 17
 Compact Flash card 18
 Memory overview 19
 PC 104 Bus 20
 System interfaces 22
 Technical data 22
 Connections CX1020-N010 24
 Connections CX1020-N020 26
 Connections CX1020-N030/40 31
 Connections CX1020-N031/41 32
 Connections CX1020-N060 35
 Connections CX1020-A001 37
 Power supply units 38
 Overview power supply units 38
 Technical data CX1100-0001 39
 Technical data CX1100-0002 40
 Technical data CX1100-0003 41
 Technical data CX1100-0004 42
 Connections CX1100-0001 43
 Connections CX1100-0002 44
 Connections CX1100-0003 45
 Connections CX1100-0004 46
 LCD display 47

3. Transport 48
 Unpacking, installation and transport 48
Table of Contents

4. Assembly and connecting 49
 Mechanical assembly 49
 Dimensions 49
 Mechanical assembly of basic module 55
 Mechanical assembly of fieldbus connectors 58
 Ground connection to cooling element 59
Start-up procedure 61
 Switching on / off 61
BIOS Setup 62
 Standard CMOS Features 63
 IDE Primary Master 65
 IDE Primary Slave 67
 Advanced BIOS Features 69
 CPU Feature 72
 Advanced Chipset Features 73
 Integrated Peripherals 75
 OnChip IDE Device 76
 Onboard Device 77
 SuperIO Device 78
 Power Management Setup 79
 PnP / PCI Configuration 81
 IRQ Resources 82
 Memory Resources 83
 PC Health Status 84
 Frequency / Voltage Control 86
5. Error handling and diagnostics 87
 CPU basic module 87
 LED CPU basic module 87
 System interfaces 88
 LED CF reader / writer 88
 Power supply units 89
 LED CX1100-0001 89
 LED CX1100-0002 90
 LED CX1100-0003 92
 LED CX1100-0004 94
 Faults 95
6. Removal and disposal 96
 Removal and disposal 96
7. Appendix 98
 Accessories 98
 Certifications 99
 Support and service 100
1. Foreword

Notes on the Documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards. It is essential that the following notes and explanations are followed when installing and commissioning these components.

Liability Conditions

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

The documentation has been prepared with care. The products described are, however, constantly under development. For that reason the documentation is not in every case checked for consistency with performance data, standards or other characteristics. None of the statements of this manual represents a guarantee (Garantie) in the meaning of § 443 BGB of the German Civil Code or a statement about the contractually expected fitness for a particular purpose in the meaning of § 434 par. 1 sentence 1 BGB. In the event that it contains technical or editorial errors, we retain the right to make alterations at any time and without warning. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

© This documentation is copyrighted. Any reproduction or third party use of this publication, whether in whole or in part, without the written permission of Beckhoff Automation GmbH, is forbidden.
Safety Instructions

Safety Rules
The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

State at Delivery
All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH.

Personnel Qualification
This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

Description of safety symbols
The following safety symbols are used in this operating manual. They are intended to alert the reader to the associated safety instructions.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>This symbol is intended to highlight risks for the life or health of personnel.</td>
</tr>
<tr>
<td></td>
<td>This symbol is intended to highlight risks for equipment, materials or the environment.</td>
</tr>
<tr>
<td>📌</td>
<td>This symbol indicates information that contributes to better understanding.</td>
</tr>
</tbody>
</table>

Operator's obligation to exercise diligence
The operator must ensure that
- the product is only used for its intended purpose.
- the product is only operated in sound condition and in working order.
- the instruction manual is in good condition and complete, and always available for reference at the location where the products are used.
- the product is operated only by suitably qualified and authorised personnel.
- the personnel is instructed regularly about relevant occupational safety and environmental protection aspects, and is familiar with the operating manual and in particular the safety notes contained herein.

National regulations depending on the machine type
Depending on the type of machine and plant in which the product is used, national regulations governing the controllers of such machines will apply, and must be observed by the operator. These regulations cover, amongst
other things, the intervals between inspections of the controller. The operator must initiate such inspections in good time.

Operator requirements

Read the operating instructions
All users of the product must have read the operating instructions for the system they work with.

System know-how
All users must be familiar with all accessible functions of the product.
Documentation Issue Status

<table>
<thead>
<tr>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>length of DVI Cables corrected, notes on temperature sensors added</td>
</tr>
<tr>
<td>1.5</td>
<td>cable length for ethernet cable in use of CX1020-N060 added</td>
</tr>
<tr>
<td>1.4</td>
<td>changes in new BIOS added</td>
</tr>
<tr>
<td>1.3</td>
<td>consumption value for CX1020-A001 added</td>
</tr>
<tr>
<td>1.2</td>
<td>notes for ground connection added</td>
</tr>
<tr>
<td>1.1</td>
<td>LED blink codes for power supply CX1100-0004 (EtherCAT) extended</td>
</tr>
<tr>
<td>1.0.0</td>
<td>notes for use of fieldbus connector added</td>
</tr>
<tr>
<td>0.1.0</td>
<td>installation guide for system interface CX1020-N60 and licenses added</td>
</tr>
<tr>
<td>0.0.6</td>
<td>LED - diagnostics for CX1020-N060 added</td>
</tr>
<tr>
<td>0.0.5</td>
<td>memorymapping (Busmaster, DPRAM I/O)</td>
</tr>
<tr>
<td>0.0.4</td>
<td>system interface CX1020-N060 and notes to network interfaces added</td>
</tr>
<tr>
<td>0.0.3</td>
<td>basic version</td>
</tr>
<tr>
<td>0.0.2</td>
<td>revised Version</td>
</tr>
<tr>
<td>0.0.1</td>
<td>preliminarily version</td>
</tr>
</tbody>
</table>
2. Product overview

Appropriate Use

The CX1020 device series is a modular control system designed for top-hat rail installation. The system is scalable, so that the required modules can be assembled and installed in the control cabinet or terminal box as required.

Only switch the PC off after closing the software

Before the Embedded PC is switched off, the software currently running on it should be stopped properly in order to avoid data loss on the hard disk. Please read the section on “Switching off”.

Switch off all system components and uncouple the Industrial PC from the system if the PC is not used for control purposes, e.g. during a function test. Disconnect the device by pulling the first terminal after the power supply unit (CX1100-002 and CX1100-002) (optional) and the fieldbus connectors.

System components that have been switched off must be secured against being switched on again.

The power supply unit of the Embedded PC requires a 24 V DC supply.

<table>
<thead>
<tr>
<th>Danger</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning icon] Do not exchange any parts when under power!</td>
</tr>
</tbody>
</table>

When components are being fitted or removed, the supply voltage must be switched off.

Software knowledge

<table>
<thead>
<tr>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning icon] Mandatory software knowledge!</td>
</tr>
</tbody>
</table>

Every user must be familiar with any of the functions of the software installed on the PC that he can reach.
The system

With the CX series of Embedded PCs Beckhoff has combined PC technology and modular I/O level to form a top-hat rail unit in the control cabinet. The CX1020 extends the CX product family by a version with higher CPU performance. The CX1020 enables direct connection of Bus Terminals and EtherCAT terminals.

While the CX1000 features an 266 MHz AMD Geode processor, the CX1020 is equipped with a 1 GHz Intel(r) CPU. It is an energy-saving device that operates with ultra-low core voltage and features low thermal power dissipation of only 7 W TDP (thermal design power). As a result, no fan is required despite the compact design of the CX1020 Embedded PC. Since Compact Flash is used as boot and memory medium, no rotating media are required in the controller. This is an important aspect for increasing the MTBF (Mean Time Between Failures) of the overall system.

The case and assembly concept of the CX1020 is similar to that of its smaller brother, the CX1000: It also consists of several components that can be assembled by the user. The simplest configuration consists of a CPU module and a multi-functional power supply unit. The PC104 bus is used for the connection between these and all other CX components, although in the CX1020 this was extended with EtherCAT signals. The basic CPU module is equipped with two RJ-45 sockets and an integrated 3-port switch as standard. In practice, this often means that no separate switch is required, since a line topology can be configured conveniently: For example in building installations, where several room controls can be distributed across each floor, which otherwise would have to be networked via a star topology.

Like the CX1000, the CX1020 can be expanded with optional system interfaces. A DVI-I (=DVI-D + VGA) output, two USB-2.0 interfaces, up to four RS232 interfaces and audio are available. The four RS232 interfaces feature opto-decoupling and can optionally be implemented as RS422/RS.

The same reusability also applies to the multi-functional power supplied units (CX1100-000x) of the CX1020: one without I/O terminal connection, one with K-Bus connection, one with K-Bus and IP-Link connection for IP-67-protected Fieldbus Box modules, and a power supply unit with direct connection facility for Beckhoff EtherCAT Terminals.

EtherCAT as a fast I/O system

The CX1020 Embedded PC was developed for optimum interaction with EtherCAT. The two Ethernet interfaces of the CPU module are not primarily intended for EtherCAT operation. The EtherCAT connection is established via the EK1110 (EtherCAT) or EK1200 (E-bus) extension terminals.

Interestingly, EtherCAT offers several options for connecting conventional fieldbus systems to the CX1020: either as a CX1500 module directly at the CPU or as an EtherCAT device in terminal form. The PROFIBUS master is available either as a CX1500-M310 or as an EL6731 EtherCAT terminal. Both types offer the same performance...
characteristics - e.g. both support PROFIBUS DP-V2. In practice, this means that the PROFIBUS master can be positioned exactly where it is required within a machine. It no longer has to be implemented as a plug-in card in the IPC or a master controller in the control cabinet.

PLC, Motion Control, interpolation and visualisation

As a top-hat rail IPC and in conjunction with the TwinCAT software from Beckhoff, the CX1020 offers the same functionality as large Industrial PCs. In terms of PLC, up to four virtual IEC 61131 CPUs can be programmed with up to four tasks each, with a minimum cycle time of 50 µs. All IEC 61131-3 languages can be used.

Moreover, all TwinCAT functionalities are available for Motion Control applications:
In theory, up to 256 axes can be controlled. In addition to simple point-to-point movements, more complex multi-axis functions such as "electronic gearbox", "cam plates" and "flying saw" can be implemented. In contrast to the CX1000, due to its higher CPU performance the CX1020 can now also execute interpolating 3D path movements and DIN66025 programs.

In addition to real-time execution of control tasks, the TwinCAT real-time kernel ensures that enough time remains for the user interface (HMI), to communicate with the real-time components via software interfaces such as ADS or OPC.

For the CX1020 the same basic principle applies: it is a programming tool for all controllers. The complete programming of PLC, Motion Control and visualisation is transferable to all PC controls from Beckhoff, which is reassuring in cases where it becomes apparent during a project that more processing power is required after all. In this case a system with higher performance can be used.

Basic CPU module

Further system interfaces or fieldbus connections can be added to the basic CPU module. The CPU module requires a CX1100 type power supply module.

All CX1500 fieldbus modules and all CX1100 power supply units from the CX1000 series can be used in combination with the CX1020.

The CX1100-0004 power supply unit offers a direct interface between the CX1020 and the EtherCAT Terminals. The combination of CX1020, EtherCAT and TwinCAT enables cycle and response times of less than 1 millisecond.

The CPU module is available in several variants. These relate to:
- Internal memory configuration: there are three options - either 64 MB Flash/256 MB DDR RAM (standard), 512 MB RAM, or 1 GB RAM.
- System interface configuration: as an option, a DVI and two USB Interfaces can be added to the combination of two Ethernet and RJ 45 ports that are always present.
- Operating system: There is a choice between "Microsoft Windows CE.NET" or "Microsoft Windows XP Embedded".
- Pre-installed TwinCAT software: CX1020 can be pre-installed without a TwinCAT system, with TwinCAT CE PLC, TwinCAT CE NC PTP or TwinCAT CE NCI, or with the associated full version of the individual TwinCAT levels for PLC and Motion Control.

System interfaces

Further system interfaces for serial communication (2x RS 232 or RS422, RS485), 2 x USB 2.0 interfaces, video output (DVI +), CF card reader/writer or audio signals can be ordered separately.

Fieldbus interfaces

All CX1500 fieldbus modules and all CX1100 power supply units from the CX1000 series can be used in combination with the CX1020.

The fieldbus interfaces are currently available as master and slave versions for the following fieldbuses:
- Beckhoff Lightbus, Profibus DP, CANopen, DeviceNet or SERCOS interface (only master)
- The master fieldbus connections enable a CX1020 system to use Beckhoff fieldbus components (such as Bus Coupler, Bus Terminal Controller or Drive Technology) as local control components for complex systems.
- Slave fieldbus connections enable the CX1020 system to be used as a subordinate distributed control system for complex or modular systems.

Note:
Documentation describing the fieldbus connections is available separately.
The software

In combination with the TwinCAT automation software, the CX1020 Industrial PC becomes a powerful IEC 61131-3 PLC with up to four user tasks. Additionally, Motion Control tasks can also be executed. Depending on the required cycle time, several servo axes can be controlled. Even special functions such as flying saw, electronic gearbox and cam plate can be realised.

The CX1020 system is programmed in the same way as other bus controllers:

Remote programming via Ethernet
This option is used if the basic unit is equipped with “Windows CE.NET”. In this case, the system is programmed via a laptop or a desktop PC, which is connected to the CX1020 via Ethernet (network or crossover cable). The programs are developed on the laptop with a standard TwinCAT software licence and then loaded into the target device.

Visualisation
The Beckhoff OPC server is available for interfacing with SCADA packets, if the two operating system variants “Windows CE.NET” or “Windows XP Embedded” are used. In other words, the CX1020 also offers straightforward visualisation and simultaneous control in real-time on a single system.
Basic modules

Technical Data

Dimensions:

The basic configuration of the CX1020 includes a 64 MB Compact Flash card. Two Ethernet RJ 45 interfaces are also part of the basic configuration. These interfaces are connected to an internal switch and offer a simple option for creating a line topology without the need for additional Ethernet switches. All other CX family components can be connected via the PC104 interface that is available on both sides. The passive cooling module is included in the scope of supply. For power supply one of the system power supply modules (CX1100-000x) is needed.

<table>
<thead>
<tr>
<th>Technical data</th>
<th>CX1020-0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>processor</td>
<td>Intel® Celeron® M ULV, 1 GHz clock frequency</td>
</tr>
<tr>
<td>Flash memory</td>
<td>64 MB Compact Flash card</td>
</tr>
<tr>
<td>Internal main memory</td>
<td>256 MB DDR-RAM (expandable to 512MByte, 1 GB)</td>
</tr>
<tr>
<td>Interfaces</td>
<td>2 x RJ45 (internal switch)</td>
</tr>
<tr>
<td>Diagnostics LED</td>
<td>1 x Power, 2 x LAN link/activity, 1 x TC, 1 x flash access</td>
</tr>
<tr>
<td>Expansion slot</td>
<td>1 x Compact Flash type I+ II insert with eject mechanism</td>
</tr>
<tr>
<td>Clock</td>
<td>internal battery-backed clock for time and date</td>
</tr>
<tr>
<td>Operating system</td>
<td>Microsoft Windows CE.NET or Microsoft Windows XP Embedded</td>
</tr>
<tr>
<td>Control software</td>
<td>TwinCAT PLC Runtime, TwinCAT NC PTP Runtime oder TwinCAT NCI Runtime</td>
</tr>
<tr>
<td>System bus</td>
<td>16 Bit ISA (PC104 standard)</td>
</tr>
<tr>
<td>Power supply</td>
<td>via system bus (through power supply module CX1100-000x)</td>
</tr>
<tr>
<td>Max. power loss</td>
<td>11 W (including CX1100-N0xx systeminterfaces)</td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>96 mm x 112 mm x 99 mm</td>
</tr>
<tr>
<td>Wight</td>
<td>app. 550 g</td>
</tr>
<tr>
<td>Operating/storage</td>
<td>0° C ... +50° C / -25° C ... +85° C</td>
</tr>
<tr>
<td>temperature</td>
<td>95% no condensation</td>
</tr>
<tr>
<td>Vibration/shock resistance</td>
<td>conforms to EN 60068-2-6 / EN 60068-2-27/29</td>
</tr>
<tr>
<td>EMC resistance burst / ESD</td>
<td>conforms to EN 61000-6-2/EN 61000-6-4</td>
</tr>
<tr>
<td>protection class</td>
<td>IP 20</td>
</tr>
</tbody>
</table>
Configurations

The Basic CPU-Module can be ordered with different hardware and software variations. As operating systems there are “Windows CE.NET” and “Windows XP Embedded” available. The TwinCAT automation software transforms a CX1020 system into powerful PLC and Motion Control system that can be operated with or without visualisation.

The order identifier of the basic CPU module is derived as follows:

Following CX1020 configurations are available:

<table>
<thead>
<tr>
<th>Ordering information</th>
<th>DVI / USB</th>
<th>no operating system</th>
<th>Windows CE</th>
<th>Windows XPE</th>
<th>no TwinCAT PLC Runtime</th>
<th>TwinCAT NC PTP Runtime</th>
<th>TwinCAT NC I Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX1020-0000</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX1020-0010</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX1020-0011</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX1020-0012</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>CX1020-0013</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>CX1020-0100</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX1020-0110</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX1020-0111</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>CX1020-0112</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>CX1020-0113</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>CX1021-0020</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX1021-0021</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX1021-0022</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>CX1021-0023</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>CX1021-0120</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX1021-0121</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CX1021-0122</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>CX1021-0123</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

CX1020 Systems with Windows XP Embedded require a Compact Flash card with a capacity of at least 256 mbyte.

Note: For detailed information about the software images see the CX10x0 Software Documentation.
Connections

The basic CPU module is available with different hardware and software options. It is supplied from the power supply unit, so that only the connections are described here.

Basic CPU module with 2 Ethernet RJ 45 interfaces:

RJ 45 interface (socket):

Assignment of the RJ45 interface, Port 1:

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD +</td>
<td>Transmit +</td>
</tr>
<tr>
<td>2</td>
<td>TD -</td>
<td>Transmit -</td>
</tr>
<tr>
<td>3</td>
<td>RD +</td>
<td>Receive +</td>
</tr>
<tr>
<td>4</td>
<td>connected</td>
<td>not used</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RD -</td>
<td>Receive -</td>
</tr>
<tr>
<td>7</td>
<td>connected</td>
<td>not used</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TD & RD are exchanged at the hubs or between two PCs.

Assignment of the RJ45 interface, Port 2:

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD +</td>
<td>Transmit +</td>
</tr>
<tr>
<td>2</td>
<td>TD -</td>
<td>Transmit -</td>
</tr>
<tr>
<td>3</td>
<td>RD +</td>
<td>Receive +</td>
</tr>
<tr>
<td>4</td>
<td>connected</td>
<td>not used</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RD -</td>
<td>Receive -</td>
</tr>
<tr>
<td>7</td>
<td>connected</td>
<td>not used</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TD & RD are exchanged at the hubs or between two PCs.

Connection of the Ethernet ports:

Warning

The two Ethernet ports of a basic CPU module must not be connected to the same external switch!
Schematic structure of the network components:

The CX1020 features two MAC blocks. The first one (MAC1) operates the network interfaces for the Ethernet ports. The two outputs are connected via a switch. In this way a line structure can be configured as described below. From an operating system perspective this represents a single connection. The second block (MAC2) operates via the extended PC104 bus. The second physical network connection can be utilised via additional system interfaces. This requires either a CX1100-0004 power supply unit or a CX1020-N060 system interface. A connection to the E-bus for EtherCAT terminals is realised via the power supply unit. The CX1020-N060 interface establishes the Ethernet connection, thereby making a further network interface available.

Operating system perspective:

The operating system only sees one of the connections for the network interface. The status is always connected, since the switch is connected directly. The internal connection via the PC104 bus extension is shown as the second interface. If no expansion module is connected, the line is reported as not connected. If the CX1100-0004 power supply unit is connected Windows XPe reports "restricted or no connection". This behavior is normal, since Windows itself does not use this interface, and therefore no IP address is allocated. If the CX1020-N060 extension is connected, the connection behaves like a 'normal' network port.

These interfaces are connected to an internal 3-port switch and offer a simple option for creating a line topology without the need for additional Ethernet switches.
Basic CPU module with DVI/USB interface:
In addition to the two Ethernet ports, this basic module also features DVI/USB interfaces. The pin assignment of the basic CPU module with two USB and a DVI-I interface is explained under the associated CX1020-N 010 system interface.

Applicable to all basic CPU modules:

LED
The green power LED (PWR) is on if the basic CPU module is connected correctly to a live power supply unit.

Compact Flash slot
Further information can be found under Compact Flash slot.

PC 104 Bus
The PC 104 bus is a standardised bus with 104 ISA signals for compact embedded systems.
Battery compartment
The battery compartment is located on the left-hand side of the CPU module, between the two Ethernet ports.
It can be opened with the aid of a screwdriver (proceed carefully in order to avoid damage).

The battery is a CR2032 type from Panasonic
with the following specification:

<table>
<thead>
<tr>
<th>Battery type</th>
<th>Electrical properties (at 20° C)</th>
<th>Standard charge</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nominal voltage</td>
<td>continuous load</td>
<td>Diameter</td>
</tr>
<tr>
<td></td>
<td>nominal capacity</td>
<td></td>
<td>Height</td>
</tr>
<tr>
<td></td>
<td>3.0 V</td>
<td>0.20 mA</td>
<td>20.0 mm</td>
</tr>
<tr>
<td></td>
<td>225 mAh</td>
<td></td>
<td>3.20 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.1 g</td>
</tr>
</tbody>
</table>

Spare batteries can be ordered from Beckhoff Service.
Compact Flash slot

A Compact Flash slot is provided at the front of the basic CPU module. This enables an additional Compact Flash memory medium (format I or II) to be operated. The change is only allowed while the system is powered down - otherwise the system could crash. The card can be removed for maintenance or to extend the system storage capacity. The Compact Flash cards (CF cards) are available as accessories with different storage capacities. It is

Activating the eject mechanism below the slot with a screwdriver causes the card to be ejected by approx. 4 mm (FIGURE 1), so that it can be pulled out (FIGURE 2). If the card is pushed in (FIGURE 3), the eject mechanism will re-engage. The card is positioned correctly, if it is located approx. 1 mm lower than the front of the housing.

Figure 1: Ejecting the CF card

Figure 2: Removing the CF card

Figure 3: Inserting the CF card

Warning

The Compact Flash slot is a memory interface, not an I/O type CF slot.
Compact-Flash card

The Compact Flash card (CF card) is a non-volatile memory medium.

Data to be retained in the event of a power failure should be saved on the CF card. The CF card operates similar to a hard disk.

<table>
<thead>
<tr>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning icon] It is recommended only use CF cards supplied by Beckhoff Automation GmbH. The CF cards are made for industrial use. They possess a higher number of read / write cycles and an enhance temperature range (up to +85°C). A proper operation of the CX-System can only be guaranteed with the use of CF cards from Beckhoff Automation GmbH!</td>
</tr>
</tbody>
</table>
Adapter RAM Hardware address overview

available memory addresses CX1020: D0000-DFFFF (hex)

<table>
<thead>
<tr>
<th>Base Address (hex)</th>
<th>End Address (hex)</th>
<th>Size(Bytes)(hex)</th>
<th>Access Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0000</td>
<td>D0FFF</td>
<td>1000</td>
<td>R/W</td>
<td>CX1100-0002/3 Dual Ported RAM</td>
</tr>
<tr>
<td>D1000</td>
<td>D100F</td>
<td>10</td>
<td>R/W</td>
<td>CX1100 Auxiliary Control Block (LCD Display, misc. registers)</td>
</tr>
<tr>
<td>D1010</td>
<td>D101F</td>
<td>10</td>
<td>R/W</td>
<td>CX1100-0900 UPS Control Block</td>
</tr>
<tr>
<td>D2000</td>
<td>D3FFF</td>
<td>2000</td>
<td>R/W</td>
<td>CX1100 Non Volatile RAM</td>
</tr>
<tr>
<td>D4000</td>
<td>D5FFF</td>
<td>2000</td>
<td>R/W</td>
<td>CX1500-M310 Profibus Master DPRAM</td>
</tr>
<tr>
<td>D6000</td>
<td>D7FFF</td>
<td>2000</td>
<td>R/W</td>
<td>CX1500-M510 CANopen Master DPRAM</td>
</tr>
<tr>
<td>D8000</td>
<td>D9FFF</td>
<td>2000</td>
<td>R/W</td>
<td>CX1500-M520 DeviceNet Master DPRAM</td>
</tr>
<tr>
<td>DA000</td>
<td>DBFFF</td>
<td>2000</td>
<td>R/W</td>
<td>CX1500-M200 Lightbus Master DPRAM</td>
</tr>
<tr>
<td>DC000</td>
<td>DDFFF</td>
<td>2000</td>
<td>R/W</td>
<td>CX1500-M750 Sercos Master DPRAM</td>
</tr>
</tbody>
</table>

For some fieldbus connections (all Slave modules) the base addresses are mapped in the memory region upper DFFFF(hex). So this modules must be ordered with other base addresses. The same situation takes place if more than two or more master modules of same type are used (for more see note below). The order numbers for the modules are:

<table>
<thead>
<tr>
<th>order number</th>
<th>alternative ISA-Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master connection</td>
<td></td>
</tr>
<tr>
<td>CX1500-Mxxx-0001</td>
<td>D4000</td>
</tr>
<tr>
<td>CX1500-Mxxx-0002</td>
<td>D6000</td>
</tr>
<tr>
<td>CX1500-Mxxx-0003</td>
<td>D8000</td>
</tr>
<tr>
<td>CX1500-Mxxx-0004</td>
<td>DA000</td>
</tr>
<tr>
<td>CX1500-Mxxx-0005</td>
<td>DC000</td>
</tr>
<tr>
<td>Slave connection</td>
<td></td>
</tr>
<tr>
<td>CX1500-Bxxx-0001</td>
<td>D4000</td>
</tr>
<tr>
<td>CX1500-Bxxx-0002</td>
<td>D6000</td>
</tr>
<tr>
<td>CX1500-Bxxx-0003</td>
<td>D8000</td>
</tr>
<tr>
<td>CX1500-Bxxx-0004</td>
<td>DA000</td>
</tr>
<tr>
<td>CX1500-Bxxx-0005</td>
<td>DC000</td>
</tr>
</tbody>
</table>

Replace xxx with the following number for the requested fieldbus system:

- 200 for Lightbus
- 310 for Profibus
- 510 for CAN-open
- 520 for DeviceNet
- 750 for Sercos (only Master connection available)

Note

Two connection modules (master or slave) can be used simultaneously. If more than two connections are needed call Beckhoff Automation GmbH for further information.
PC 104 Bus

The PC 104 bus is a standardized bus with 104ISA signals for compact embedded systems.

For the functionality of the CX1020 modules eight further signals have been added (here marked with color).

Pin assignment of 16 Bit PC 104 Bus:

<table>
<thead>
<tr>
<th>Pin Nummer</th>
<th>Row A</th>
<th>Row B</th>
<th>Row C<sup>4</sup></th>
<th>Row D<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IOCHCK*</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>SD7</td>
<td>RESETDRV</td>
<td>SBHE*</td>
<td>MEMCS16*</td>
</tr>
<tr>
<td>3</td>
<td>SD6</td>
<td>+5V</td>
<td>LA23</td>
<td>IOCS16*</td>
</tr>
<tr>
<td>4</td>
<td>SD5</td>
<td>IRQ9</td>
<td>LA22</td>
<td>IRQ10</td>
</tr>
<tr>
<td>5</td>
<td>SD4</td>
<td>-5V</td>
<td>LA21</td>
<td>IRQ11</td>
</tr>
<tr>
<td>6</td>
<td>SD3</td>
<td>DRQ2</td>
<td>LA20</td>
<td>IRQ12</td>
</tr>
<tr>
<td>7</td>
<td>SD2</td>
<td>-12V</td>
<td>LA19</td>
<td>IRQ13</td>
</tr>
<tr>
<td>8</td>
<td>SD1</td>
<td>ENDXFR*</td>
<td>LA18</td>
<td>IRQ14</td>
</tr>
<tr>
<td>9</td>
<td>SD0</td>
<td>+12V</td>
<td>LA17</td>
<td>DACK0*</td>
</tr>
<tr>
<td>10</td>
<td>IOCHRDY</td>
<td>(KEY)<sup>2</sup></td>
<td>MEMR*</td>
<td>DRQ0</td>
</tr>
<tr>
<td>11</td>
<td>AEN</td>
<td>SMEMW*</td>
<td>MEMW*</td>
<td>DACK5*</td>
</tr>
<tr>
<td>12</td>
<td>SA19</td>
<td>SMEMR*</td>
<td>SD8</td>
<td>DRQ5</td>
</tr>
<tr>
<td>13</td>
<td>SA18</td>
<td>IOW*</td>
<td>SD9</td>
<td>DACK6*</td>
</tr>
<tr>
<td>14</td>
<td>SA17</td>
<td>IOR*</td>
<td>SD10</td>
<td>DRQ6</td>
</tr>
<tr>
<td>15</td>
<td>SA16</td>
<td>DACK3*</td>
<td>SD11</td>
<td>DACK7*</td>
</tr>
<tr>
<td>16</td>
<td>SA15</td>
<td>DRQ3</td>
<td>SD12</td>
<td>DRQ7</td>
</tr>
<tr>
<td>17</td>
<td>SA14</td>
<td>DACK1*</td>
<td>SD13</td>
<td>+5V</td>
</tr>
<tr>
<td>18</td>
<td>SA13</td>
<td>DRQ1</td>
<td>SD14</td>
<td>MASTER*</td>
</tr>
<tr>
<td>19</td>
<td>SA12</td>
<td>REFRESH*</td>
<td>SD15</td>
<td>GND</td>
</tr>
<tr>
<td>20</td>
<td>SA11</td>
<td>SYSCLK</td>
<td>(KEY)<sup>2</sup></td>
<td>GND</td>
</tr>
<tr>
<td>21</td>
<td>SA10</td>
<td>IRQ7</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>22</td>
<td>SA9</td>
<td>IRQ6</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>23</td>
<td>SA8</td>
<td>IRQ5</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>24</td>
<td>SA7</td>
<td>IRQ4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>25</td>
<td>SA6</td>
<td>IRQ3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>26</td>
<td>SA5</td>
<td>DACK2*</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>27</td>
<td>SA4</td>
<td>TC</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>SA3</td>
<td>BALE</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>29</td>
<td>SA2</td>
<td>+5V</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>30</td>
<td>SA1</td>
<td>OSC</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>31</td>
<td>SA0</td>
<td>GND</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>32</td>
<td>GND</td>
<td>GND</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Remarks:
1. B10 and C19 are key locations.
2. Signal timing and function are as specified in ISA specification.
3. Signal source/sink current differ from ISA values.
4. In the specification the pins are counted from 0 to 19

Assignment on the 8 additional pins

<table>
<thead>
<tr>
<th>Pin number (yellow fields)</th>
<th>Row C</th>
<th>Row D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LAN TX-</td>
<td>LAN TX+</td>
</tr>
<tr>
<td>2</td>
<td>LAN RX-</td>
<td>LAN RX+</td>
</tr>
<tr>
<td>3</td>
<td>USB D-</td>
<td>USB D+</td>
</tr>
<tr>
<td>4</td>
<td>SMBDAT</td>
<td>SMBCLK</td>
</tr>
</tbody>
</table>

Note:
Further information to PC104 Bus can be found in the datasheet or under http://www.pc104.org.
System interfaces

Technical Data

Dimensions:

Like for the CX1000, a number of optional interface modules are available for the basic CX1020 CPU module that can be installed ex works. The following interfaces are available:

- CX1020-N010 DVI / USB Module
- CX1020-N020 Audio interfaces
- CX1020-N030/40 serial interface for RS323
- CX1020-N031/41 serial interface for RS422 / RS485
- CX1020-N060 Ethernet-interface
- CX1020-A001 Compact-Flash card slot

The CX1020-N010 option can be connected to Beckhoff Control Panels or standard monitors with DVI or VGA input via the DVI or USB interfaces. Devices such as printer, scanner, mouse, keyboard, mass storage, CR-RW etc. can be
connected via the USB 2.0 interfaces. Multimedia capability is realized via the CX1020-N020 audio interface. The modules CX1020-N030 and CX1020-N040 offer a total of four serial RS232 interfaces with a maximum transfer speed of 115 kbaud. These four interfaces can be implemented in pairs as RS422/RS485, in which case they are identified as CX1020-N031 and CX1020-N041 respectively. The system interfaces cannot be retrofitted or expanded in the field. They are supplied ex factory in the specified configuration and cannot be separated from the CPU module. The system interfaces run through the internal PC104 bus, so that further CX components can be connected. The power supply of the system interface modules is ensured via the internal PC104 bus.

<table>
<thead>
<tr>
<th>Technical data</th>
<th>CX1020-N010</th>
<th>CX1020-N020</th>
<th>CX1020-N030 CX1020-N040</th>
<th>CX1020-N031 CX1020-N041</th>
<th>CX1020-N060</th>
<th>CX1020-N001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>1 x DVI + 2 x USB 2.0</td>
<td>Line IN, MIC IN, Line OUT</td>
<td>1 x COM1+2, RS232
1 x COM3+4, RS232</td>
<td>1 x COM1+2, RS422/RS485
1 x COM3+4, RS422/RS485</td>
<td>1 x Ethernet 10/100 mbit</td>
<td>1 x Ethernet 10/100 mbit</td>
</tr>
<tr>
<td>Connection type</td>
<td>DVI-I 29-pin socket + 2 USB Ports type A</td>
<td>3.5 mm socket for jack plug</td>
<td>2 x D-Sub plug 9-pin</td>
<td>2 x D-Sub plug 9-pin</td>
<td>1 x RJ45</td>
<td>Compact-Flash-Modul</td>
</tr>
<tr>
<td>Properties</td>
<td>DVI-I interface also carries out VGA signals (DVI-A)</td>
<td>built-in PC-Beeper
Line OUT output, max. 200 mW, suitable for earphones</td>
<td>max. baud rate 115 kbaud, can not be used simultaneously with N030/N040</td>
<td>max. baud rate 115 kbaud, can not be used simultaneously with N031/N041</td>
<td>network connection for enhanced PC104 Bus</td>
<td>Compact-Flash-mass storage</td>
</tr>
<tr>
<td>Power supply</td>
<td>via system bus (Through CX1100-000x power supply module)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>19 mm x 100 mm x 51 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 °C ... +55 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-25 °C ... +85 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>95% no condensations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration/Shock resistance</td>
<td>conforms to EN 60068-2-6 / EN 60068-2-27/29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC resistance burst / ESD</td>
<td>conforms to EN 61000-6-2/EN 61000-6-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection class</td>
<td>IP 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wight</td>
<td>app. 80 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CX1020-N001 connections

In addition to the two Ethernet interfaces, this module features a DVI-I and two USB interfaces.

DVI-I interface

The DVI-I interface transfers analog and digital data and is suitable for connection to analog graphics cards with 15 pin D-Sub connector and digital graphics cards with DVI-D output. The resolution at the screen or the Beckhoff Control Panel depends on the distance (maximum 5 m).

The DVI interface uses VGA signals, so that the connection of CRT VGA monitors to the CX1000 system using a DVI to VGA adapter is also possible. This adapter is available as an accessory.

DVI-I socket:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
<th>Pin</th>
<th>Assignment</th>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TMDS Data 2-</td>
<td>9</td>
<td>TMDS Data 1-</td>
<td>17</td>
<td>TMDS Data 0-</td>
</tr>
<tr>
<td>2</td>
<td>TMDS Data 2+</td>
<td>10</td>
<td>TMDS Data 1+</td>
<td>18</td>
<td>TMDS Data 0+</td>
</tr>
<tr>
<td>3</td>
<td>TMDS Data 2/4 Shield</td>
<td>11</td>
<td>TMDS Data 1/3 Shield</td>
<td>19</td>
<td>TMDS Data 0/5 Shield</td>
</tr>
<tr>
<td>4</td>
<td>not connected</td>
<td>12</td>
<td>not connected</td>
<td>20</td>
<td>not connected</td>
</tr>
<tr>
<td>5</td>
<td>not connected</td>
<td>13</td>
<td>not connected</td>
<td>21</td>
<td>not connected</td>
</tr>
<tr>
<td>6</td>
<td>DDC Clock</td>
<td>14</td>
<td>+ 5V Power</td>
<td>22</td>
<td>TMDS Clock Shield</td>
</tr>
<tr>
<td>7</td>
<td>DDC Data</td>
<td>15</td>
<td>Ground (+5V, Analog H/V Sync)</td>
<td>23</td>
<td>TMDS Clock +</td>
</tr>
<tr>
<td>8</td>
<td>Analog Vertical Sync</td>
<td>16</td>
<td>Hot Plug Detect</td>
<td>24</td>
<td>TMDS Clock -</td>
</tr>
</tbody>
</table>

Resolution at the monitor:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Analog Red Video Out</td>
</tr>
<tr>
<td>C2</td>
<td>Analog Green Video Out</td>
</tr>
<tr>
<td>C3</td>
<td>Analog Blue Video Out</td>
</tr>
<tr>
<td>C4</td>
<td>Analog Horizontal Sync</td>
</tr>
<tr>
<td>Resolution in pixels</td>
<td>Distance of the interface from the monitor</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>1600 x 1200</td>
<td>5 m</td>
</tr>
<tr>
<td>1280 x 1024</td>
<td>5 m</td>
</tr>
<tr>
<td>1024 x 768</td>
<td>5 m</td>
</tr>
<tr>
<td>800 x 600</td>
<td>5 m</td>
</tr>
<tr>
<td>640 x 480</td>
<td>5 m</td>
</tr>
</tbody>
</table>

USB interface:

The USB socket is a type A socket. The USB interface complies to USB 2.0 specification.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
<th>Typical assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>D-</td>
<td>White</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
<td>Green</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Black</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Drain Wire</td>
</tr>
</tbody>
</table>
CX1020-N020 connections

This system interface provides the audio interface for the CX1020 system. Two inputs, "LINE IN" and "MIC IN", are available. The "LINE OUT" connection is used as output for audio signals. It can also be used for connecting headphones with a maximum output of 200 mW. It also features a PC beeper. The audio interfaces are accessed via the operating system. "Windows XPe" offers an option for switching the audio module to surround mode.

The 3.5 mm sockets are designed for jack plugs.

Standard / stereo mode:

The audio module operates in stereo mode as standard, using stereo outputs/inputs and a single-channel input for the microphone. The inputs should be connected as indicated. The pin assignments are described below.

Line In / Line Out stereo jack plugs:

Pin assignment Line In / Line Out:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>left channel</td>
</tr>
<tr>
<td>R</td>
<td>right channel</td>
</tr>
<tr>
<td>Ground</td>
<td>Ground</td>
</tr>
</tbody>
</table>

The left channel is transferred via the tip of the jack plug, the right channel via the first ring. The remainder of the sleeve is used for earthing.

Mic In mono jack plug:

The only existing channel is transferred via the tip, the remainder of the sleeve is used for earthing.
Surround sound mode

Two surround sound modes can be set via the Codec driver:

- 4 speakers (R/L front, R/L back)
- 5:1 speakers (R/L front, R/L back, centre and subwoofer)

The connectors are usually colour-coded. Should this not be the case, they should be connected as follows:

- "LINE IN" -> R/L back,
- "MIC IN" -> subwoofer and centre
- "LINE OUT" -> R/L front

The pin assignment is as follows:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>left channel, back</td>
</tr>
<tr>
<td>R</td>
<td>right channel, back</td>
</tr>
<tr>
<td>Ground</td>
<td>Ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>centre channel</td>
</tr>
<tr>
<td>S</td>
<td>subwoofer channel</td>
</tr>
<tr>
<td>Ground</td>
<td>Ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>left channel, front</td>
</tr>
<tr>
<td>R</td>
<td>right channel, front</td>
</tr>
<tr>
<td>Ground</td>
<td>Ground</td>
</tr>
</tbody>
</table>
Sound driver settings:

The sound driver is called up by double-clicking on the blue icon with yellow circles in the system tray. The window "AC97 Audio Configuration" appears. It is used for adapting the driver to the current speaker configuration. The "General" tab shows the driver data. Direct access to the driver via the system tray can be deactivated via the "Show icon in system tray" checkbox.

The number of speakers is selected in the "Speaker Configuration" tab. The connection details are displayed on the right-hand side of the window.

The colours of the connections shown match those on the CX1020-N020 module. Once a configuration has been set it can be tested via the "Speaker Test" tab.
Clicking on a speaker causes a signal to be sent to the selected speaker. The user can thus check the positioning or allocation of the individual speakers to the audio channels. Once all speakers have been set correctly, the surround sound can be tested via "HRTF Demo".

The test parameters can be set via the selection menus:

Sound:
- LOOPY MUSIC (rhythm consisting of high and low sounds)
- Buzzing Bee

Path:
- Horizontal
- Vertical
- Insect Motion (random insect flight)
- Manual - horizontal (point controlled by mouse movement)
- Manual - vertical (point controlled by mouse movement)

Environment:
- None (no signal modification)
- Bathroom (filter)
- Concert Hall (filter)
- Arena (filter)
- Stone Corridor (filter)
- Sewer Pipe (filter)
- Under Water (filter)

A test signal can be selected via "Sound". The "Path" statement specifies the motion in space. A filter can be selected under "Environment". The test can be started or stopped via "Play"/"Stop".

If the speaker configuration is unknown, it can be determined via "Connector Sensing". The user can then enter the configuration in the "Speaker Configuration" tab.

Further filters can be set permanently in the "Sound Effect" tab. A wide range of environment filters are available. By default no filter is selected. Further filter functions such as "Auto Gain Control" (signal amplification) or "Voice Cancellation" are available for voice filtering.
Parameters for controlling certain frequency bands can be set under "Equalizer". Standard settings for certain types of music (e.g. rock, pop, bass, ...) are also available.

Noise suppression for the microphone input can be selected in the "Microphone" tab. Although the "S/PDIF In" and "S/PIF Out" tabs are available in the driver, they are currently not supported.
CX1020-N030/40 connections

The CX1020-N030 system interface features two RS232 interfaces, COM1 and COM2 (9 pin Sub-D plug connector). If there is need for more than two serial interfaces two further RS232 interfaces, COM3 and COM4 (9 pin Sub-D plug connector) can be added to the system via the system interface CX1020-N40. The maximum baud rate on all channels is 115 kBit. The pin assignment for all interfaces is equal and described below. The interface parameter can be set in the operating system or in the PLC program.

RS232 COM interface (connector):

Pin assignment COM interface:

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>Signal in</td>
<td>Data Carrier Detected</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
<td>Signal in</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td>Signal out</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>Signal out</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>Signal in</td>
<td>Dataset Ready</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Signal out</td>
<td>Request to Send</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Signal in</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td>Signal in</td>
<td>Ring Indicator</td>
</tr>
</tbody>
</table>

Note

The system interface CX1020-N30 can only be used instead and not simultaneously with system interface CX1020-N031. The system interface CX1020-N40 can only be used instead and not simultaneously with system interface CX1020-N041.
CX1020-N031/41 connections

The CX1020-N031 system interface features two RS422 / RS 485 interfaces, COM1 and COM2 (9 pin Sub-D plug connector). If there is need for more than two serial interfaces two further RS422 / RS485 interfaces, COM3 and COM4 (9 pin Sub-D plug connector) can be added to the system via the system interface CX1020-N41. The maximum baud rate on all channels is 115 kBit. The pin assignment for all interfaces is equal and described below. The interface parameter can be set in the operating system or in the PLC program.

RS232 COM interface (connector):

Pin assignment COM interface:

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>TxD+</td>
<td>Data-Out +</td>
<td>Transmit 422</td>
</tr>
<tr>
<td>3</td>
<td>RxD+</td>
<td>Data-In +</td>
<td>Receive 422</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td>VCC</td>
<td>+5V</td>
</tr>
<tr>
<td>7</td>
<td>TxD-</td>
<td>Data-Out -</td>
<td>Transmit 422</td>
</tr>
<tr>
<td>8</td>
<td>RxD-</td>
<td>Data-In -</td>
<td>Receive 422</td>
</tr>
</tbody>
</table>

For RS 485 Pin 2 and 3 (Data +) as well as Pin7 and 8 (Data -) have to be connected..
Setting the interface parameter

If the system interface CX1020-N031/N041 resides at the end of the CX1020-system block, it is easy to access the dip switches. The dip switches for the configuration of the RS485/422 interfaces can be found at the left side of the module. If you remove the grey cover you can see the switch:

![Dip Switch Diagram](image)

The upper switch sets the parameters for the upper interface, the lower switch sets the parameter for the lower interface. The system must be powered down, if the settings of the switches are changed! The settings for default use should be mentioned by ordering the interface module.

Settings DIP switches RS485:

<table>
<thead>
<tr>
<th>DIP</th>
<th>Status</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>off</td>
<td>Echo on</td>
</tr>
<tr>
<td>2</td>
<td>on</td>
<td>Echo off</td>
</tr>
<tr>
<td>3</td>
<td>on</td>
<td>Auto send on</td>
</tr>
<tr>
<td>4</td>
<td>off</td>
<td>Always send on</td>
</tr>
<tr>
<td>5</td>
<td>on</td>
<td>Auto receive on</td>
</tr>
<tr>
<td>6</td>
<td>off</td>
<td>Always receive on</td>
</tr>
<tr>
<td>7</td>
<td>on</td>
<td>Term on</td>
</tr>
<tr>
<td>8</td>
<td>on</td>
<td>Term on</td>
</tr>
</tbody>
</table>

RS485 with Echo, End-Point (Terminated)

<table>
<thead>
<tr>
<th>DIP</th>
<th>Status</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>on</td>
<td>Echo on</td>
</tr>
<tr>
<td>2</td>
<td>off</td>
<td>Echo off</td>
</tr>
<tr>
<td>3</td>
<td>on</td>
<td>Auto send on</td>
</tr>
<tr>
<td>4</td>
<td>off</td>
<td>Always send on</td>
</tr>
<tr>
<td>5</td>
<td>off</td>
<td>Auto receive on</td>
</tr>
<tr>
<td>6</td>
<td>on</td>
<td>Always receive on</td>
</tr>
<tr>
<td>7</td>
<td>on</td>
<td>Term on</td>
</tr>
<tr>
<td>8</td>
<td>on</td>
<td>Term on</td>
</tr>
</tbody>
</table>
RS485 without Echo, Drop-Point (without Termination)

<table>
<thead>
<tr>
<th>DIP</th>
<th>Status</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>off</td>
<td>Echo on</td>
</tr>
<tr>
<td>2</td>
<td>on</td>
<td>Echo off</td>
</tr>
<tr>
<td>3</td>
<td>on</td>
<td>Auto send on</td>
</tr>
<tr>
<td>4</td>
<td>off</td>
<td>Always send on</td>
</tr>
<tr>
<td>5</td>
<td>off</td>
<td>Auto receive on</td>
</tr>
<tr>
<td>6</td>
<td>on</td>
<td>Always receive on</td>
</tr>
<tr>
<td>7</td>
<td>off</td>
<td>Term on</td>
</tr>
<tr>
<td>8</td>
<td>off</td>
<td>Term on</td>
</tr>
</tbody>
</table>

RS485 with Echo, Drop-Point (without Termination)

<table>
<thead>
<tr>
<th>DIP</th>
<th>Status</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>on</td>
<td>Echo on</td>
</tr>
<tr>
<td>2</td>
<td>off</td>
<td>Echo off</td>
</tr>
<tr>
<td>3</td>
<td>on</td>
<td>Auto send on</td>
</tr>
<tr>
<td>4</td>
<td>off</td>
<td>Always send on</td>
</tr>
<tr>
<td>5</td>
<td>off</td>
<td>Auto receive on</td>
</tr>
<tr>
<td>6</td>
<td>on</td>
<td>Always receive on</td>
</tr>
<tr>
<td>7</td>
<td>off</td>
<td>Term on</td>
</tr>
<tr>
<td>8</td>
<td>off</td>
<td>Term on</td>
</tr>
</tbody>
</table>

Setting DIP-Switches RS422:

RS422 full duplex end point

<table>
<thead>
<tr>
<th>DIP</th>
<th>Status</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>on</td>
<td>Echo on</td>
</tr>
<tr>
<td>2</td>
<td>off</td>
<td>Echo off</td>
</tr>
<tr>
<td>3</td>
<td>off</td>
<td>Auto send on</td>
</tr>
<tr>
<td>4</td>
<td>on</td>
<td>Always send on</td>
</tr>
<tr>
<td>5</td>
<td>off</td>
<td>Auto receive on</td>
</tr>
<tr>
<td>6</td>
<td>on</td>
<td>Always receive on</td>
</tr>
<tr>
<td>7</td>
<td>on</td>
<td>Term on</td>
</tr>
<tr>
<td>8</td>
<td>on</td>
<td>Term on</td>
</tr>
</tbody>
</table>

Note

The system interface CX1020-N31 can only be used instead and not at the same time with system interface CX1020-N030.
The system interface CX1020-N41 can only be used instead and not at the same time with system interface CX1020-N040.
CX1020-N060 connections

The CX1020-N060 system interface provides a further network interface. It can only be used if the CX1100-0004 power supply unit is not connected, since in this case the only internal interface available is used for connecting the Ethernet port. (Details see Basic module description.)

RJ 45 interface (socket):

Assignment of the RJ45 interface, Port 1:

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD +</td>
<td>Transmit +</td>
</tr>
<tr>
<td>2</td>
<td>TD -</td>
<td>Transmit -</td>
</tr>
<tr>
<td>3</td>
<td>RD +</td>
<td>Receive +</td>
</tr>
<tr>
<td>4</td>
<td>connected</td>
<td>not used</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RD -</td>
<td>Receive -</td>
</tr>
<tr>
<td>7</td>
<td>connected</td>
<td>not used</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TD & RD are exchanged at the hubs or between two PCs.

Warning

The CX1020-N060 system interface may only be mounted on the right, directly at the CPU module. The setup is shown in the following figures.
Proper mounting position:
The interface is located between the CPU module and the power supply unit.

Incorrect mounting position:
The interface is located to the left of the CPU module, in series with the other system interfaces.

Warning
The connected network cable must not have a length of more than 15 meters!

Note
The CX1020-N060 system interface can only be used in place of the CX1100-0004 power supply unit, not at the same time.
CX1020-A001 connections

This module features a further Compact-Flash card reader/writer. It can be mounted to the system in the field. A removable media can be added to the CX-system in this way. In contradiction to the system CF card slot, this slot is 'hot-pluggable' - the media can be changed during system runtime. The function of the LEDs is described in the chapter diagnostics.

![Image of the CX1020-A001 module](image)

Warning

Only the CF card of the extension module CX1020-A001 is 'hot-pluggable'. The system CF-slot must NOT be removed during operation!

The used CF cards should be form the same type as the CF cards for the system cards. The handling is the same as the handling of the system slot. Though the case of the module matches the CX-system cases the handling (installation and decommissioning) is the equal.

Power consumption

The current and power consumption depend on the inserted memory media. The following table shows the consumption values.

<table>
<thead>
<tr>
<th>Media</th>
<th>Condition</th>
<th>Current consumption</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Standby</td>
<td>2 mA</td>
<td>10 mW</td>
</tr>
<tr>
<td>CF card</td>
<td>Idle</td>
<td>1 mA</td>
<td>5 mW</td>
</tr>
<tr>
<td>CF card</td>
<td>Access</td>
<td>20 mA</td>
<td>100 mW</td>
</tr>
<tr>
<td>Micro Drive</td>
<td>Idle</td>
<td>1 mA</td>
<td>5 mW</td>
</tr>
<tr>
<td>Micro Drive</td>
<td>Access</td>
<td>30 mA</td>
<td>150 mW</td>
</tr>
</tbody>
</table>
Power supply units

CX1100-000x | Power supply units and I/O interfaces

A choice of four power supply modules is available for use with a CX10x0 system. The power supply of all other system components is ensured via the internal PC104 bus; no separate supply lines are required. However, the CX1100 components offer further important characteristics that go beyond a pure power supply: an integrated NOVRAM enables the fail-safe storage of process data, an LCD display with two lines of 16 characters each is used for displaying system and user messages. A 4 + 1 keypad enables user input without additional keyboard or input panel. Local I/O signals are connected via the CX1100-0002 power supply variant, to which all Beckhoff Bus Terminals can be connected, or via CX1100-0003, which in addition to the Bus Terminals enables the connection of Extension Box IExxxx type Beckhoff Fieldbus Box modules. The option to connect Bus Terminals or a Fieldbus Box creates a control system with a very variable, expandable I/O level with large signal variety. The I/O data are stored in a DPRAM, which is accessible by the CPU via the system bus. The power supply units of the CX system can be changed in the field: If, for example, local I/O via Bus Terminals is required, CX1100-0001 can be replaced with CX1100-0002 in the field. EtherCAT terminals can be connected via the CX1100-0004 power supply unit. The I/O data are stored directly in the main memory of the CX1100-0004 CPU; a DPRAM is no longer required. The CX1100-0004 power supply unit for EtherCAT terminals can only be connected in conjunction with the basic CX1020 CPU module.

The technical data are provided with the individual power supply unit specifications:

- CX1100-0001
- CX1100-0002
- CX1100-0003
- CX1100-0004

An overview of the power supply architecture and a detailed description of the general system components such as GGB, ACB, NOVRAM, display and keypad can be found in the documentation for the power supply units.
Technical data CX1100-0001

dimensions:

One of power supply modules can be selected for a CX10x0 system. The power supply of all other system components is ensured via the internal PC104 bus; no separate supply lines are required. However, the CX1100 components offer further important characteristics that go beyond a pure power supply: an integrated NOVRAM enables the fail-safe storage of process data, an LCD display with two lines of 16 characters each is used for displaying system and user messages.

The power supply CX1100-N001 has no I/O interfaces.

<table>
<thead>
<tr>
<th>Technical data</th>
<th>CX1100-0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>24 V DC (-15%/+20%)</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>500 V$_{eff}$ (supply / internal electronics)</td>
</tr>
<tr>
<td>Max. power consumption</td>
<td>2.5 W</td>
</tr>
<tr>
<td>Recommended fuse at 24 V</td>
<td>4 A</td>
</tr>
<tr>
<td>K-bus connection</td>
<td>-</td>
</tr>
<tr>
<td>E-bus connection</td>
<td>-</td>
</tr>
<tr>
<td>IP-Link connection</td>
<td>-</td>
</tr>
<tr>
<td>K-bus power supply to</td>
<td>-</td>
</tr>
<tr>
<td>connection type</td>
<td>1 x Open Pluggable Connector, 5-pin</td>
</tr>
<tr>
<td>NOVRAM</td>
<td>8 kByte</td>
</tr>
<tr>
<td>Display</td>
<td>FSTN display 2 lines x 16 characters of text, illuminated</td>
</tr>
<tr>
<td>I/O-DPRAM</td>
<td>-</td>
</tr>
<tr>
<td>Diagnose LED</td>
<td>1 x PWR</td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>45 mm x 100 mm x 91 mm</td>
</tr>
<tr>
<td>weight</td>
<td>app.180 g</td>
</tr>
<tr>
<td>operating/storage temperature</td>
<td>0° C ... +55° C / -25° C ... +85° C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>95% no condensation</td>
</tr>
<tr>
<td>Vibration/shock resistance</td>
<td>conforms to EN 60068-2-6 / EN 60068-2-27/29</td>
</tr>
<tr>
<td>EMC resistance burst / ESD</td>
<td>conforms to EN 61000-6-2 / EN 61000-6-4</td>
</tr>
<tr>
<td>protection class</td>
<td>IP 20</td>
</tr>
</tbody>
</table>
Technical data CX1100-0002

dimensions:

![Dimensions Diagram]

<table>
<thead>
<tr>
<th>Technical data</th>
<th>CX1100-0002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>24 V DC (-15%/+20%)</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>500 V_{eff} (supply / internal electronics)</td>
</tr>
<tr>
<td>Max. power consumption</td>
<td>3.5 W</td>
</tr>
<tr>
<td>Recommended fuse at 24 V</td>
<td>4 A</td>
</tr>
<tr>
<td>K-bus connection</td>
<td>yes (adapter terminal)</td>
</tr>
<tr>
<td>E-bus connection</td>
<td>-</td>
</tr>
<tr>
<td>IP-Link connection</td>
<td>-</td>
</tr>
<tr>
<td>K-bus power supply to</td>
<td>1.75 A</td>
</tr>
<tr>
<td>connection type</td>
<td>Cage-Clamp (adapter terminal)</td>
</tr>
<tr>
<td>NOVRAM</td>
<td>8 kByte</td>
</tr>
<tr>
<td>Display</td>
<td>FSTN display 2 lines x 16 characters of text, illuminated</td>
</tr>
<tr>
<td>I/O-DPRAM</td>
<td>2 kByte</td>
</tr>
<tr>
<td>Diagnose LED</td>
<td>1 x PWR, 1 x I/O Run, 1 x I/O Err</td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>40 mm x 100 mm x 91 mm</td>
</tr>
<tr>
<td>weight</td>
<td>app.250 g</td>
</tr>
<tr>
<td>operating/storage temperature</td>
<td>0° C ... +55° C / -25° C ... +85° C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>95% no condensation</td>
</tr>
<tr>
<td>Vibration/shock resistance</td>
<td>conforms to EN 60068-2-6 / EN 60068-2-27/29</td>
</tr>
<tr>
<td>EMC resistance burst / ESD</td>
<td>conforms to EN 61000-6-2 / EN 61000-6-4</td>
</tr>
<tr>
<td>protection class</td>
<td>IP 20</td>
</tr>
</tbody>
</table>
Technical data CX1100-0003

<table>
<thead>
<tr>
<th>Technical data</th>
<th>CX1100-0003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>24 V DC (-15%/-20%)</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>500 V<sub>eff</sub> (supply / internal electronics)</td>
</tr>
<tr>
<td>Max. power consumption</td>
<td>4 W</td>
</tr>
<tr>
<td>Recommended fuse at 24 V</td>
<td>4 A</td>
</tr>
<tr>
<td>K-bus connection</td>
<td>yes (adapter terminal)</td>
</tr>
<tr>
<td>E-bus connection</td>
<td>-</td>
</tr>
<tr>
<td>IP-Link connection</td>
<td>yes</td>
</tr>
<tr>
<td>K-bus power supply to</td>
<td>1.75 A</td>
</tr>
<tr>
<td>connection type</td>
<td>Cage-Clamp (adapter terminal)</td>
</tr>
<tr>
<td>NOVRAM</td>
<td>8 kByte</td>
</tr>
<tr>
<td>Display</td>
<td>FSTN display 2 lines x 16 characters of text, illuminated</td>
</tr>
<tr>
<td>I/O-DPRAM</td>
<td>4 kByte</td>
</tr>
<tr>
<td>Diagnose LED</td>
<td>1 x PWR, 1 x I/O Run, 1 x I/O Err</td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>58 mm x 100 mm x 91 mm</td>
</tr>
<tr>
<td>weight</td>
<td>app.350 g</td>
</tr>
<tr>
<td>operating/storage temperature</td>
<td>0° C ... +55° C / -25° C ... +85° C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>95% no condensation</td>
</tr>
<tr>
<td>Vibration/shock resistance</td>
<td>conforms to EN 60068-2-6 / EN 60068-2-27/29</td>
</tr>
<tr>
<td>EMC resistance burst / ESD</td>
<td>conforms to EN 61000-6-2 / EN 61000-6-4</td>
</tr>
<tr>
<td>protection class</td>
<td>IP 20</td>
</tr>
</tbody>
</table>
With the CX1100-0004 power supply EtherCAT Terminals can be connected to the CX1020-System. With CX1100-0004 the I/O data are stored directly in the main memory of the CPU; a DPRAM is no longer required. The CX1100-0004 power supply unit for EtherCAT Terminals can only be connected in conjunction with the basic CX1020 CPU module.

Technical data CX1100-0004

<table>
<thead>
<tr>
<th>Technical data</th>
<th>CX1100-0004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>24 V DC (-15%/+20%)</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>500 V<sub>eff</sub> (supply / internal electronics)</td>
</tr>
<tr>
<td>Max. power consumption</td>
<td>3.5 W</td>
</tr>
<tr>
<td>Recommended fuse at 24 V</td>
<td>4 A</td>
</tr>
<tr>
<td>K-bus connection</td>
<td>-</td>
</tr>
<tr>
<td>E-bus connection</td>
<td>yes (adapter terminal)</td>
</tr>
<tr>
<td>IP-Link connection</td>
<td>-</td>
</tr>
<tr>
<td>E-bus power supply to connection type</td>
<td>Cage-Clamp (adapter terminal)</td>
</tr>
<tr>
<td>NOVDRAM</td>
<td>8 kByte</td>
</tr>
<tr>
<td>Display</td>
<td>FSTN display 2 lines x 16 characters of text, illuminated</td>
</tr>
<tr>
<td>I/O-DPRAM</td>
<td>-</td>
</tr>
<tr>
<td>Diagnose LED</td>
<td>1 x PWR, 1 x L/A Run, 1 x RUN</td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>40 mm x 100 mm x 91 mm</td>
</tr>
<tr>
<td>weight</td>
<td>app. 250 g</td>
</tr>
<tr>
<td>operating/storage temperature</td>
<td>0° C ... +55° C / -25° C ... +85° C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>95% no condensation</td>
</tr>
<tr>
<td>Vibration/shock resistance</td>
<td>conforms to EN 60068-2-6 / EN 60068-2-27/29</td>
</tr>
<tr>
<td>EMC resistance burst / ESD</td>
<td>conforms to EN 61000-6-2 / EN 61000-6-4</td>
</tr>
<tr>
<td>protection class</td>
<td>IP 20</td>
</tr>
</tbody>
</table>
CX1100-0001 connections

This power supply unit does not have an I/O interface. The power supply is therefore connected through the 5-pin open pluggable connector. The power supply unit supplies all further system components with a voltage of 24 V DC (-15 %/+20%) via the PC104 bus. The dielectric strength of the power supply unit is 500 V$_{\text{rms}}$. The integrated NOVRAM permits storage of process data that is safe against power failure.

![Image of CX1100-0001 connections]

Pin Allocation Open Style Connector:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24 V DC</td>
</tr>
<tr>
<td>2</td>
<td>0 V DC</td>
</tr>
<tr>
<td>3</td>
<td>GROUND</td>
</tr>
<tr>
<td>4</td>
<td>reserved / don't use</td>
</tr>
<tr>
<td>5</td>
<td>reserved / don't use</td>
</tr>
</tbody>
</table>

LED:

With proper connection of the power supply unit and with power supply turned on, the power LED (PWR) lights up green. In the case of a short-circuit, it lights up red.
CX1100-0002 connections

This power supply unit is equipped with an I/O interface, which permits connection of the Beckhoff Bus Terminals. The power is supplied via the upper spring-loaded terminals labelled “24V” and “0V”. The supply voltage feeds the CX system and supplies a voltage of 24 V DC (-15 %/+20%) to the Bus Terminals via the K-Bus. The dielectric strength of the power supply unit is 500 Vrms. Since the K-Bus does no more than pass data on, a further power supply is necessary for the Bus Terminals. This is provided by means of the power contacts, which are not connected to the power supply. The integrated NOVRAM permits storage of process data that is safe against power failure.

LED:

With proper connection of the power supply unit and with power supply turned on, the power LED (PWR) lights up green. In the case of a short-circuit, it lights up red.

The I/O LEDs display the operation status of the Bus Terminals. Error-free start-up of the configuration is signalled by the red "I/O ERR" LED being extinguished. If the "I/O ERR" LED blinks, an error in the area of the terminals is indicated. The error code can be determined from the frequency and number of blinks.

PE power contacts

The "PE" power contact must not be used for other potentials.
CX1100-0003 connections

This power supply unit permits not only the connection of the Beckhoff Bus Terminals, but also the serial connection of the Beckhoff fieldbus box modules of the type extension box IExxxx. The power is supplied via the upper spring-loaded terminals labelled “24V” and “0V”.

The supply voltage feeds the CX system and, over the K-Bus, the Bus Terminals. Since the K-Bus does no more than pass data on, a further power supply is necessary for the Bus Terminals. This is provided by means of the power contacts, which are not connected to the power supply.

![CX1020 product image](image)

Fieldbus connection:
Plug the IP link connector into the respective connections, i.e. one fibre-optic cable each into IN (x03) and OUT (x04). You then connect the other end with the corresponding IP link interface of the extension box. The connection must be made so that the output of the fieldbus connection is connected to the input of the extension box and vice versa.

LED:
With proper connection of the power supply unit and with power supply turned on, the power LED (PWR) lights up green. In the case of a short-circuit, it lights up red. The I/O LEDs display the operation status of the Bus Terminals. Error-free start-up of the configuration is signalled by the red “I/O ERR” LED being extinguished. If the “I/O ERR” LED blinks, an error in the area of the terminals is indicated. The error code can be determined from the frequency and number of blinks.

PE power contacts
The “PE” power contact must not be used for other potentials.
CX1100-0004 connections

This power supply unit is equipped with an I/O interface, which permits connection of the Beckhoff Bus Terminals. The power is supplied via the upper spring-loaded terminals labelled “24V” and “0V”. The supply voltage feeds the CX system and supplies a voltage of 24 V DC (-15 %/+20%) to the Bus Terminals via the E-Bus. The dielectric strength of the power supply unit is 500 Vrms. Since the E-Bus does no more than pass data on, a further power supply is necessary for the Bus Terminals. This is provided by means of the power contacts, which are not connected to the power supply. The integrated NOVRAM permits storage of process data that is safe against power failure.

LED:

With proper connection of the power supply unit and with power supply turned on, the power LED (PWR) lights up green. In the case of a short-circuit, it lights up red.

PE power contacts

The "PE" power contact must not be used for other potentials.

Achtung

The power supply CX1100-0004 can only be used instead and not simultaneously with system interface CX1020-N041.
LCD Display

The LCD display of the power supply units has two rows of 16 characters each and is used for displaying system and user messages.

"Index-Group/Offset" Specification for the LCD Display

<table>
<thead>
<tr>
<th>Index Group</th>
<th>Index Offset</th>
<th>Access</th>
<th>Data type</th>
<th>Phys. unit</th>
<th>Def. range</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00005000</td>
<td>0xFFFF90FF</td>
<td>R&W</td>
<td></td>
<td></td>
<td></td>
<td>Cursor OFF</td>
<td></td>
</tr>
<tr>
<td>+ DeviceID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cursor ON</td>
<td></td>
</tr>
<tr>
<td>0x00005000</td>
<td>0xFFFF91FF</td>
<td>R&W</td>
<td></td>
<td></td>
<td></td>
<td>Cursor blink OFF</td>
<td></td>
</tr>
<tr>
<td>+ DeviceID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cursor blink ON</td>
<td></td>
</tr>
<tr>
<td>0x00005000</td>
<td>0xFFFF92FF</td>
<td>R&W</td>
<td></td>
<td></td>
<td></td>
<td>Display OFF</td>
<td></td>
</tr>
<tr>
<td>+ DeviceID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Display ON</td>
<td></td>
</tr>
<tr>
<td>0x00005000</td>
<td>0xFFFF93FF</td>
<td>R&W</td>
<td></td>
<td></td>
<td></td>
<td>Backlight OFF</td>
<td></td>
</tr>
<tr>
<td>+ DeviceID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Backlight ON</td>
<td></td>
</tr>
<tr>
<td>0x00005000</td>
<td>0xFFFF94FF</td>
<td>R&W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ DeviceID</td>
<td>0xFFFFA0FF</td>
<td>R&W</td>
<td></td>
<td></td>
<td></td>
<td>Write Text line 1</td>
<td></td>
</tr>
<tr>
<td>0x00005000</td>
<td>0xFFFF00FF</td>
<td>R&W</td>
<td></td>
<td></td>
<td></td>
<td>Write Text line 2</td>
<td></td>
</tr>
</tbody>
</table>
3. Transport

Unpacking, installation and transport

The specified storage conditions must be adhered to (see “Technical data”).

Dimensions and weight of the individual modules:

Dimensions (W x H x D): 19 x 100 x 91 mm (system interface), 96 x 112 x 99 mm (basic module) and 58 x 100 x 91 mm (power supply unit with I/O interface)

Weight: 80 g (system interface) to 550 g (basic module)

Unpacking

Proceed as follows to unpack the unit:

1. Remove packaging.
2. Do not discard the original packaging. Keep it for future relocation.
3. Check the delivery for completeness by comparing it with your order.
4. Please keep the associated paperwork. It contains important information for handling the unit.
5. Check the contents for visible shipping damage.
6. If you notice any shipping damage or inconsistencies between the contents and your order, you should notify Beckhoff Service.

Warning

<table>
<thead>
<tr>
<th></th>
<th>Danger of damage to the unit!</th>
</tr>
</thead>
</table>

During transport in cold conditions, or if the unit is subjected to extreme temperature swings, condensation on and inside the unit must be avoided.

Prior to operation, the unit must be allowed to slowly adjust to room temperature. Should condensation occur, a delay time of approximately 12 hours must be allowed before the unit is switched on.

Installation

The devices are designed for installation in control cabinets. You will find installation instructions in the chapter mechanical mounting.

Shipping and relocation

Despite the robust design of the unit, the components are sensitive to strong vibrations and impacts. During transport, your computer should therefore be protected from excessive mechanical stress. Therefore, please use the original packaging.
4. Assembly and connecting

Mechanical assembly

Dimensions

The CX1000 product range is characterized by small overall installed size and high modularity. For project planning purposes, a CPU module, a power supply unit and the associated system interfaces and fieldbus interfaces have to be provided. The overall width of the application is made up of the individual modules. With a height of 100 mm, the module dimensions exactly match those of the Beckhoff Bus Terminals. Together with the lowered connector surfaces, this means that it can be used in a standard terminal box with a height of 120 mm.

Warning

To ensure cooling to the device in operation it is important keep the safety distances. Details see installation position below.

CX1020 Basic CPU-module:

CX1000-N00x / CX1020-N0x0 System interfaces:
Assembly and connecting

CX1100-000x power supplies:

CX1100-0001
powered supply without I/O-interface

CX1100-0002
powered supply with I/O-interface (K-Bus-connection)
CX1100-0003
power supply with I/O-interfaces (K-Bus-connection and IP-Link)

CX1100-0004 (only use with CX1020)
power supply with I/O-interface (E-Bus-connection)
Assembly and connecting

CX1100-09x0 UPS modules:

CX1100-0900

CX1100-0910

CX1100-0920

Embedded PC CX1020

52
CX1500-Mxxx und CX1500-Bxxx fieldbus connections

All modules for the fieldbus connections (master and slave) have the dimensions (W x H x D) 38 mm x 100 mm x 91 mm.

CX1500-Bxxx
Mechanical assembly of the basic module

The installation of the modules takes place in three steps:

1. The sequence of the modules

The basic CPU module with system interfaces, which are factory-installed on the left side, is extended with the power supply unit on the right and with the fieldbus connection (master or slave) left side if available.

2. Assembly of the CPU and the power supply unit

The individual modules are simply plugged together. The PC104 connector plugs should be handled carefully in order to avoid damage. When correctly assembled, no significant gap can be seen between the attached housings.

3. Engaging on the top-hat rail

On the bottom of the modules, there is a white tension strap, which is connected with a latching mechanism. These tension straps must be pulled down before attaching to the top-hat rail. This can be done using an ordinary screwdriver and a slight turn.
Then fix the CX1020 block on the top-hat rail using the latching straps. You should hear a soft click.

⚠️ Do not force the module or apply excessive pressure!

Only apply pressure at insensitive points of the housing (edges). Never apply pressure on the display, the buttons or movable parts of the CX10x0 system.

After successful latching on the top-hat rail the straps should be pushed back to their original position.

Note:
A locking mechanism prevents the individual housings from being pulled off again. Detailed information relating to disassembly of the CX1020 configuration from the top-hat rail can be found on page “Removal and disposal”.

Installation position:

<table>
<thead>
<tr>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning Icon] The maximum ambient temperature for CPU modules mounted on a top-hat rail is 55°C. The orientation in which the device is fitted must be selected in such a way that cooling air can flow vertically through the ventilation holes. The images show the correct (Fig. 8) and two incorrect installation positions (Figs. 9 & 10).</td>
</tr>
</tbody>
</table>

Observe minimum clearance!

Mounting must provide a clearance of 30 mm both above and below a CX1000 device combination to ensure adequate ventilation of the base CPU module and the power supply unit.
Correct installation position:
The high-performance CX1020 system generates a significant amount of heat, which is dissipated via a passive ventilation system. This system requires the unit to be mounted correctly. Ventilation openings are located at the top and bottom of the housing. The system therefore has to be installed horizontally. This ensures optimum air flow.

Incorrect installation positions:
The CX1020 system must not be operated vertically on the top-hat rail. A vertical position would lead to insufficient CPU ventilation, since the ventilation openings are located on the top and bottom of the housing. Installation of the system on its side would also lead to inadequate ventilation.
Mechanical installation of the fieldbus connection

Installation of a fieldbus connection involves several steps:

1. Removing the cover of the basic CX1020 module

In order to be able to connect the fieldbus to the basic CX1020 module, the cover of the basic CX1000/CX1020 module has to be removed first. This is achieved by applying slight pressure on the cover.
2. Assembly and connection to the CX1000/CX1020 configuration

Since the CX1000 configuration is already positioned on the top-hat rail, the assembly first has to be pushed onto the top-hat rail. To this end the latching mechanism has to be released by pulling the white straps downwards. The assembly is connected to the existing CX1000/CX1020 configuration by simply plugging the two units together. Care must be taken that the plug of the PC104 interface is not damaged. When correctly assembled, no significant gap can be seen between the attached housings. Finally, the white straps are returned to their original position, so that the locking mechanism engages.

3. Install cover

If the connection area does not have a closing cover on the left-hand side, the cover that was previously removed should be pressed over the connections until it audibly engages.

Note:
If the CX1000/CX1020 configuration is not positioned on the top-hat rail, it is possible to connect the assembly with the CX1000/CX1020 configuration first and then latch the whole module onto the top-hat rail. The installation is described in section Installation and wiring.

Note:
A locking mechanism prevents the individual housings from being pulled off again.

Ground connection to cooling element

The cooling element is made of aluminum. Though for proper operating it must be connected to ground. This connection is realized by a bolt and a screw at the bottom of the cooling element. The set of bolt and screw is assembled in the factory. To For installation an additional lug and the wire are needed. The ground connection set does not extend the space the system needs. If the device is installed in correct installing position (30 mm 30 mm both above and below the housing) no extra space is needed. The dimensions with the ground connection set are as follows:
The ground connection is realized via a lug of size M4. The following picture shows the order of the grommets and the lug.

The lug is placed between the middle grommets. First, the screw is fixed by turns with the hand. Then, a wrench of size S7 can be used to fix the screw. To avoid damage to the unit, it's a good idea to make use of a torque wrench.

Warning

| The torque of the screw **must not** exceed **2.4 Nm**! Otherwise, the unit might get damaged. |

The ground wire must be connected to the ground.
Start-up procedure

Switching the PC on and off

Switching on
The power supply for the basic CPU module comes from the power supply unit. The basic CPU module starts automatically when the power supply unit is connected to the mains.

Switching on for the first time
When you switch on the PC for the first time, the pre-installed operating system (optional) will be started.

Switching off
The Embedded PC switches off when the power supply unit is switched off. The control software typically running on Embedded PCs should be shut down or stopped correctly. A user who may not close software may also not switch the Embedded PC off, since data can be lost from the hard disk by switching off while software is running.

Once the software has been stopped, the operating system can be shut down. Only then should the power supply be interrupted.
Note on using the setup

Warning

Beckhoff Automation GmbH supplies the CX1020 systems pre-configured, which means they are READY FOR USE! The BIOS settings should only be modified by appropriately trained staff. Under Windows CE the BIOS should not be changed at all, since the operating system is adapted to the hardware configuration. Any change in the addresses or interrupts would lead to unstable system behaviour or even crashing.

Within the individual setup pages, F6 can be used for loading fail-safe defaults, and F7 for optimised default values for the individual setup entries. These default values are applied irrespective of whether the board was previously booted successfully with a particular setup setting. The situation is different if the defaults are called from the TOP menu. Once a setup setting that subsequently led to successful booting was saved, both menu items will load these values as defaults for the setup pages. See also "Load Fail-Safe Defaults" and "Load Optimized Defaults".

Top menu

Phoenix - AwardBIOS CMOS Setup Utility

<table>
<thead>
<tr>
<th>Standard CMOS Features</th>
<th>Frequency/Voltage Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced BIOS Features</td>
<td>Load Fail-Save Defaults</td>
</tr>
<tr>
<td>Advanced Chipset Features</td>
<td>Load Optimized Defaults</td>
</tr>
<tr>
<td>Integrated Peripherals</td>
<td>Set Password</td>
</tr>
<tr>
<td>Power Management Setup</td>
<td>Save & Exit Setup</td>
</tr>
<tr>
<td>PnP/PCI Configuration</td>
<td>Exit Without Saving</td>
</tr>
<tr>
<td>PC Health Status</td>
<td></td>
</tr>
</tbody>
</table>

ESC: Quit
↑ ↓ → ← Select Item
F10: Save & Exit Setup

"Brief description of the function selected above"

A "►" sign in front of the menu item indicates that a submenu is available. A „x“ sign in front of a menu item indicates that a setting option is available that first has to be activated via a higher-level setting.

Load Fail-Save Defaults
This option is used for absolute security settings. It is not suitable for continuous operation, but can be useful if the PC malfunctions.

Load Optimized Defaults
This option is used for setting optimum values as recommended by the manufacturer.

Set Passwort
Here you can enter a setup password for preventing unauthorised invoking of the BIOS.

Save & Exit Setup
This option is used to save the settings and exit setup. Input: Y (Please note: enter Z with German keyboard).

Exit Without Saving
Quit setup without saving the settings. Setting: Y (Please note: enter Z with German keyboard).
Standard CMOS Features

This menu is used for setting the date, time, hard disks, graphics mode and start-up behaviour. At the same time, information about the memory configuration determined by the system is provided. The memory configuration information cannot be changed. The setting options for date, time, graphics mode and start-up behaviour are described below. A new menu opens for setting the hard disk data.

Phoenix – AwardBIOS CMOS Setup Utility

Standard CMOS Features

<table>
<thead>
<tr>
<th>Date (mm:dd:yy)</th>
<th>Mon, Jan 30 2006</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (hh:mm:ss)</td>
<td>11 : 11 : 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>► IDE Primary Master</td>
<td>[None]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>► IDE Primary Slave</td>
<td>[None]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>[EGA/VGA]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halt On</td>
<td>[All, But Keyboard]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Memory</td>
<td>640K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Memory</td>
<td>228352K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Memory</td>
<td>229376K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ → ←:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help

F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

Date (mm:dd:yy)
Options:

- mm ... month
- dd ... day
- yy ... year

Time (hh:mm:ss)
Options:

- hh ... hours
- mm ... minutes
- ss ... seconds

VIDEO
Parameter for setting the graphics mode for the graphics card / the graphics output. EGA / VGA is standard today.
Options:

- EGA/VGA
- CGA 40
- CGA 80
- Mono

Halt On
This parameter can be used for stopping the boot process in the event of errors. Errors may be ignored. This menu
item is used to configure the settings.

Options:
- All Errors (stop for all types of error)
- No Errors (ignore all errors and continue system start-up)
- All, But Keyboard (missing keyboard is ignored)

Base Memory
This option is used for displaying the conventional memory (0 KB to 640 KB) in order to indicate whether it was detected by the POST.

Extended Memory
Available memory from the first MB to the maximum memory capacity.

Total Memory
This is the total of base memory, extended memory and other memory.
IDE Primary Master

This menu is used for setting the data of the first hard disk connected to the IDE bus as master. The hard disk data (size, number of cylinders, heads, sectors, pre-compensation and home position of the heads when the disk is switched off) are displayed automatically for the connected hard disk.

Phoenix - AwardBIOS CMOS Setup Utility

IDE Primary Master

<table>
<thead>
<tr>
<th>IDE HDD Auto-Detection</th>
<th>[Press Enter]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDE Primary Master</td>
<td>[Auto]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Mode</td>
<td>[Auto]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>0 MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precomp</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing Zone</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sector</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ → ← :Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

IDE HDD Auto-Detection:
Automatic detection of the hard disk is initiated by pressing the <Enter> key. After a few seconds the physical data of the connected hard disk should be displayed in the lower section of the menu.

IDE Primary Master:
This parameter is used for configuring the IDE bus. The following options are available:

- None (no hard disk connected to this bus connection)
- Auto (auto-detection during each boot process)
- Manual (the hard disk is addressed with the set parameters)

Access Mode:
This option can be used to select the operating system for the hard disk. Setting options: CHS, LBA, LARGE, or Auto. Auto is the recommended setting. Normal (standard) mode supports hard disks with a capacity of up to 528 MB. This mode uses positions for data access that are specified via cylinders (CYLS), heads, and sectors. The older LBA (Logical Block Addressing) mode can support hard disks with a capacity of up to 8.4 GB. This mode uses a different method for calculating the position disk data to be accessed. It translates cylinders, heads and sectors into a logical address for the data location. Large hard disks support this mode. The BIOS supports the INT 13h extension function that enables the LBA mode to manage hard disk drives with a capacity of more than 8.4 GB. If the number of cylinders (CYLS) on the hard disk exceeds 1024 and DOS cannot support it, or if your operating system does not support LBA mode, LARGE mode should be selected. The following options are available for setting the hard disk access mode:

- CHS
- LBA
- LARGE
- Auto
The following parameters are automatically determined and displayed.

Capacity
Storage capacity of the hard disk. This value is calculated from the individual hard disk parameters.

Cylinder
Define or set the number of cylinders. Depending on the BIOS version and the manufacturer it varies between 1,024 and 16,384 cylinders.

Head
Define or set the number of heads. The number is between 1 and 16 heads.

Precomp
Write pre-compensation, required for older hard disks. This parameter specifies the cylinder from which a difference in the information density is to be expected.

Landing Zone
This parameter defines the so-called landing zone or park cylinder. This is the resting position for the hard disk head when the hard disk motor is switched off.

Sector
Define or set the number of sectors per track. Up to 63 sectors are supported, for Phoenix up to 64.
IDE Primary Slave
This menu is used for setting the data of the first hard disk connected to the IDE bus as master. The hard disk data (size, number of cylinders, heads, sectors, pre-compensation and home position of the heads when the disk is switched off) are displayed automatically for the connected hard disk.

Phoenix – AwardBIOS CMOS Setup Utility
IDE Primary Slave

<table>
<thead>
<tr>
<th>IDE HDD Auto-Detection</th>
<th>[Press Enter]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDE Primary Slave</td>
<td>[Auto]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Mode</td>
<td>[Auto]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>0 MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precomp</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing Zone</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sector</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ → ← :Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

IDE HDD Auto-Detection:
Automatic detection of the hard disk is initiated by pressing the <Enter> key. After a few seconds the physical data of the connected hard disk should be displayed in the lower section of the menu.

IDE Primary Slave:
This parameter is used for configuring the IDE bus. The following options are available:

- None (no hard disk connected to this bus connection)
- Auto (auto-detection during each boot process)
- Manual (the hard disk is addressed with the set parameters)

Access Mode:
This option can be used to select the operating system for the hard disk. Setting options: CHS, LBA, LARGE, or Auto. Auto is the recommended setting. Normal (standard) mode supports hard disks with a capacity of up to 528 MB. This mode uses positions for data access that are specified via cylinders (CYLS), heads, and sectors. The older LBA (Logical Block Addressing) mode can support hard disks with a capacity of up to 8.4 GB. This mode uses a different method for calculating the position disk data to be accessed. It translates cylinders, heads and sectors into a logical address for the data location. Large hard disks support this mode. The BIOS supports the INT 13h extension function that enables the LBA mode to manage hard disk drives with a capacity of more than 8.4 GB. If the number of cylinders (CYLS) on the hard disk exceeds 1024 and DOS cannot support it, or if your operating system does not support LBA mode, LARGE mode should be selected. The following options are available for setting the hard disk access mode:

- CHS
- LBA
- LARGE
- Auto
The following parameters are automatically determined and displayed.

Capacity
Storage capacity of the hard disk. This value is calculated from the individual hard disk parameters.

Cylinder
Define or set the number of cylinders. Depending on the BIOS version and the manufacturer it varies between 1,024 and 16,384 cylinders.

Head
Define or set the number of heads. The number is between 1 and 16 heads.

Precomp
Write pre-compensation, required for older hard disks. This parameter specifies the cylinder from which a difference in the information density is to be expected.

Landing Zone
This parameter defines the so-called landing zone or park cylinder. This is the resting position for the hard disk head when the hard disk motor is switched off.

Sector
Define or set the number of sectors per track. Up to 63 sectors are supported, for Phoenix up to 64.
Advanced BIOS Features

This menu is used for setting the data of the first hard disk connected to the IDE bus as master. The hard disk data (size, number of cylinders, heads, sectors, pre-compensation and home position of the heads when the disk is switched off) are displayed automatically for the connected hard disk.

Phoenix - AwardBIOS CMOS Setup Utility
Advanced BIOS Features

<table>
<thead>
<tr>
<th>CPU Feature</th>
<th>[Press Enter]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus Warning</td>
<td>[Disabled]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>CPU L1 & L2 Cache</td>
<td>[Enabled]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Quick Power On Self Test</td>
<td>[Enabled]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>First Boot Device</td>
<td>[LS120]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Second Boot Device</td>
<td>[HDD-0]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Third Boot Device</td>
<td>[LS120]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Boot Other Device</td>
<td>[Enabled]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Boot Up NumLock Status</td>
<td>[On]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Gate A20 Option</td>
<td>[Fast]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Typematic Rate Setting</td>
<td>[Disabled]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Typematic Rate (Chars/Sec)</td>
<td>6</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Typematic Delay (Msec)</td>
<td>250</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Security Option</td>
<td>[Setup]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>APIC Mode</td>
<td>[Enabled]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>MPS Version Control For OS</td>
<td>[1.4]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>OS Select For DRAM > 64 MB</td>
<td>[Non-OS2]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Report No FDD For WIN 95</td>
<td>[No]</td>
<td>Item</td>
<td>Help</td>
</tr>
<tr>
<td>Full Screen Logo</td>
<td>[Disabled]</td>
<td>Item</td>
<td>Help</td>
</tr>
</tbody>
</table>

↑ ↓ ← → :Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

CPU Feature
This menu item can be used for setting the CPU behaviour for thermal profiles.

Virus Warning
On start-up the boot sectors are checked for changes since the last start. Setting options: Enabled (a virus warning may appear until it is acknowledged with Confirm or switched off (Disabled)), Confirm (a required boot sector modification, e.g. after reinstallation of an operating system, is confirmed), Disabled (boot sectors are not verified).

CPU L1 & L2 Cache
The cache memory is an additional memory that is substantially faster than the conventional DRAM (system memory). If the CPU requests data, the system transfers these data from the main DRAM to the cache memory for faster access by the CPU. Setting options: Enable (standard) - cache activated, Disabled - cache deactivated.

Quick Power On Self Test
If this option is enabled the computer will start significantly faster. Booting will be up to 50 seconds faster with 64 MB RAM or more. However, not all POST tests are carried out.

First Boot Device
Here you can specify which drive should boot first. Set the drive to be used as boot drive. Options:

- LS120 (LS-Drive)
- HDD-0 (Festplatte 1)
Assembly and connecting

- SCSI (SCSI-Gerät mit Device Id 0)
- CDROM (CD-Laufwerk)
- HDD-1 (Festplatte 2)
- ZIP100 (Zip-Drive)
- USB-FDD (USB-Floppy)
- USB-ZIP (USB Zip-Drive)
- USB-CDROM (USB CDROM)
- USB-HDD (USB-Festplatte)
- LAN (Netzwerk)
- Disabled (abgeschaltet)

Second Boot Device
This setting is used for booting, if the first boot device is not available. Options:

- LS120 (LS-Drive)
- HDD-0 (Festplatte 1)
- SCSI (SCSI-Gerät mit Device Id 0)
- CDROM (CD-Laufwerk)
- HDD-1 (Festplatte 2)
- ZIP100 (Zip-Drive)
- USB-FDD (USB-Floppy)
- USB-ZIP (USB Zip-Drive)
- USB-CDROM (USB CDROM)
- USB-HDD (USB-Festplatte)
- LAN (Netzwerk)
- Disabled (abgeschaltet)

Second Boot Device
This setting is used for booting, if the first and second boot device are not available. Options:

- LS120 (LS-Drive)
- HDD-0 (Festplatte 1)
- SCSI (SCSI-Gerät mit Device Id 0)
- CDROM (CD-Laufwerk)
- HDD-1 (Festplatte 2)
- ZIP100 (Zip-Drive)
- USB-FDD (USB-Floppy)
- USB-ZIP (USB Zip-Drive)
- USB-CDROM (USB CDROM)
- USB-HDD (USB-Festplatte)
- LAN (Netzwerk)
- Disabled (abgeschaltet)
Boot Other Device
This option offers two choices: Enabled or Disabled. The standard setting is Enabled. The Enabled setting enables the BIOS to try all three types, i.e. "First Boot Device", "Second Boot Device" or "Third Boot Device".

Boot Up NumLock Status
State of the numeric keypad. With On it is activated, with Off not.

Gate A20 Option
Defines how the memory above 1MB is accessed. This should be set to Fast, in order to activate access through the chipset. With the Normal setting it is accessed via the keyboard controller. This option may speed up older computers. The first 64 K Block above 1 MB can be accessed in standard mode via address line A20. DOS will anchor itself there, if DOS=High is inserted in Config.sys.

Typematic Rate Setting
This parameter is used to specify whether the options Keyboard Typematic Speed, Delay Before Keys Repeat, Typematic Rate or Typematic Delay are available. If Disabled, the values are set to 6 characters per second, with a keyboard delay of 250 ms. The settings can also be specified via the operating system.

Typematic Rate (Chars/Sec)
Specifies the repetition rate of the keyboard when a key is pressed. The options are 6, 8, 10, 12, 15, 20, 24 or 30 characters/second.

Typmatic Delay (Msec)
This value determines when the key function is activated after a key is pressed. The options are 250, 500, 750 or 1000 milliseconds.

Security Option
This parameter specifies the option for which a password applies. If the SYSTEM option is selected, a password has to be entered during PC start-up. If the SETUP option is selected, a password is only required for accessing the BIOS.

APIC Mode
This parameter switches the APIC Controller (Advanced Programmable Interrupt Controller) on or off. According to the PC2001 regulations, the system may run in APIC mode. APIC mode offers extended IRQ resources (depending on the board). Settings: Enabled or Disabled

MPS Version Control For OS
This option specifies what MPS version (Multi-Processor Specification) is used by this board. Setting options: 1.1 or 1.4 For older operating systems 1.1 should be used, otherwise leave as 1.4.

OS Select For DRAM > 64 MB
For OS/2 systems with more than 64 MB RAM, option OS/2 should be used.

Report No FDD For WIN 95
This option should be set to Yes, if no floppy drive is installed. This option enables IRQ6, and the Windows logo is skipped.

Full Screen Logo
This option can be used to specify that the start logo should fill the whole screen during booting, thereby hiding the start data. Setting options: Enabled, Disabled
CPU Features
This menu is used for setting the CPU behaviour with thermal profiles.

Phoenix – AwardBIOS CMOS Setup Utility
CPU Feature

<table>
<thead>
<tr>
<th>Thermal Management</th>
<th>Thermal Monitor 1</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Prior to Thermal</td>
<td>[Disabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execute Disable bit</td>
<td>[Enabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ → ← :Move Enter:Select +/-/FU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

Thermal Management
The processor used has a thermal monitor. The profile is preset and cannot be changed.

Delay Prior to Thermal
The following options are available: 4, 8, 16 or 32 minutes. This option is only applicable for systems with 0.13µ Intel Pentium 4 processors with 512 KB L2 cache. These processors come with a thermal monitor consisting of a thermal sensor and a thermal control circuit (TCC). Once the thermal sensor detects that the processor has reached its maximum safe operating temperature, the TCC is activated and clocking is reduced to 50-70%. This parameter should be set to 4 minutes, unless the PC needs longer for booting, in which case a suitable higher value should be used.

Execute Disable bit
This setting option is only available for certain processors with Execute Disable Bit (XD bit) function. If this option is set to [Enabled] (activated), the processor can classify areas in memory by where application code can execute and where it cannot, thereby protecting your memory.
Advanced BIOS Features

This menu is used for setting the data of the first hard disk connected to the IDE bus as master. The hard disk data (size, number of cylinders, heads, sectors, pre-compensation and home position of the heads when the disk is switched off) are displayed automatically for the connected hard disk.

Phoenix - AwardBIOS CMOS Setup Utility
Advanced BIOS Features

<table>
<thead>
<tr>
<th>CPU Feature</th>
<th>[Press Enter]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus Warning</td>
<td>[Disabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU L1 & L2 Cache</td>
<td>[Enabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick Power On Self Test</td>
<td>[Enabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Boot Device</td>
<td>[LS120]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Boot Device</td>
<td>[HDD-0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Boot Device</td>
<td>[LS120]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boot Other Device</td>
<td>[Enabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boot Up NumLock Status</td>
<td>[On]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate A20 Option</td>
<td>[Fast]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typematic Rate Setting</td>
<td>[Disabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typematic Rate (Chars/Sec)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typmatic Delay (Msec)</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security Option</td>
<td>[Setup]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APIC Mode</td>
<td>[Enabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPS Version Control For OS</td>
<td>[1.4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS Select For DRAM > 64 MB</td>
<td>[Non-OS2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report No FDD For WIN 95</td>
<td>[No]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Screen Logo</td>
<td>[Disabled]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ ← → :Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

CPU Feature
This menu item can be used for setting the CPU behaviour for thermal profiles.

Virus Warning
On start-up the boot sectors are checked for changes since the last start. Setting options: Enabled (a virus warning may appear until it is acknowledged with Confirm or switched off (Disabled)), Confirm (a required boot sector modification, e.g. after reinstallation of an operating system, is confirmed), Disabled (boot sectors are not verified).

CPU L1 & L2 Cache
The cache memory is an additional memory that is substantially faster than the conventional DRAM (system memory). If the CPU requests data, the system transfers these data from the main DRAM to the cache memory for faster access by the CPU. Setting options: Enable (standard) - cache activated, Disabled - cache deactivated.

Quick Power On Self Test
If this option is enabled the computer will start significantly faster. Booting will be up to 50 seconds faster with 64 MB RAM or more. However, not all POST tests are carried out.

First Boot Device
Here you can specify which drive should boot first. Set the drive to be used as boot drive. Options:

Second Boot Device
This setting is used for booting, if the first boot device is not available.
Assembly and connecting

Boot Other Device
This option offers two choices: Enabled or Disabled. The standard setting is Enabled. The Enabled setting enables the BIOS to try all three types, i.e. "First Boot Device", "Second Boot Device" or "Third Boot Device".

Boot Up NumLock Status
State of the numeric keypad. With On it is activated, with Off not.

Gate A20 Option
Defines how the memory above 1MB is accessed. This should be set to Fast, in order to activate access through the chipset. With the Normal setting it is accessed via the keyboard controller. This option may speed up older computers. The first 64 K Block above 1 MB can be accessed in standard mode via address line A20. DOS will anchor itself there, if DOS=High is inserted in Config.sys.

Typematic Rate Setting
This parameter is used to specify whether the options Keyboard Typematic Speed, Delay Before Keys Repeat, Typematic Rate or Typematic Delay are available. If Disabled, the values are set to 6 characters per second, with a keyboard delay of 250 ms. The settings can also be specified via the operating system.

Typematic Rate (Chars/Sec)
Specifies the repetition rate of the keyboard when a key is pressed. The options are 6, 8, 10, 12, 15, 20, 24 or 30 characters/second.

Typematic Delay (Msec)
This value determines when the key function is activated after a key is pressed. The options are 250, 500, 750 or 1000 milliseconds.

Security Option
This parameter specifies the option for which a password applies. If the SYSTEM option is selected, a password has to be entered during PC start-up. If the SETUP option is selected, a password is only required for accessing the BIOS.

APIC Mode
This parameter switches the APIC Controller (Advanced Programmable Interrupt Controller) on or off. According to the PC2001 regulations, the system may run in APIC mode. APIC mode offers extended IRQ resources (depending on the board). Settings: Enabled or Disabled

MPS Version Control For OS
This option specifies what MPS version (Multi-Processor Specification) is used by this board. Setting options: 1.1 or 1.4 For older operating systems 1.1 should be used, otherwise leave as 1.4.

OS Select For DRAM > 64 MB
For OS/2 systems with more than 64 MB RAM, option OS/2 should be used.

Report No FDD For WIN 95
This option should be set to Yes, if no floppy drive is installed. This option enables IRQ6, and the Windows logo is skipped.

Full Screen Logo
This option can be used to specify that the start logo should fill the whole screen during booting, thereby hiding the start data. Setting options: Enabled, Disabled
Integrated Peripherals
This menu is used for setting the system interfaces.

Phoenix – AwardBIOS CMOS Setup Utility
Integrated Peripherals

<table>
<thead>
<tr>
<th>OnChip IDE Device</th>
<th>[Press Enter]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onboard Device</td>
<td>[Press Enter]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuperIO Device</td>
<td>[Press Enter]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onboard Serial Port 3</td>
<td>3E8/IRQ11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onboard Serial Port 4</td>
<td>2E8/IRQ10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO 4-5-6-7</td>
<td>1-1-1-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ ← → : Move Enter: Select +/-PU/PD: Value F10: Save ESC: Exit F1: Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

OnChip IDE Device
Here you can set the onboard IDE controller settings.

Onboard Device
Here you can set the settings for the USB and audio interfaces.

SuperIO Device
Here you can set the settings for the serial interfaces (port 1 and port 2).

Onboard Serial Port 3
Configuration of the serial interface settings: IRQ11 (used for the third serial port), Disabled (no interrupt is used).
Setting options: Auto, 3F8/IRQ11, 2F8/IRQ11, 3E8/IRQ11 or 2E8/IRQ11.

Onboard Serial Port 4
Configuration of the serial interface settings: IRQ10 (used for the fourth serial port), Disabled (no interrupt is used).
Setting options: Auto, 3F8/IRQ10, 2F8/IRQ10, 3E8/IRQ10 or 2E8/IRQ10.
Onchip IDE Device
This menu is used for setting the IDE interfaces.

Phoenix - AwardBIOS CMOS Setup Utility
Onchip IDE Device

<table>
<thead>
<tr>
<th>On-Chip Primary PCI IDE</th>
<th>[Enabled]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDE Primary Master PIO</td>
<td>[Auto]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDE Primary Slave PIO</td>
<td>[Auto]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDE Primary Master UDMA</td>
<td>[Auto]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDE Primary Slave UDMA</td>
<td>[Auto]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDE HDD Block Mode</td>
<td>[Enabled]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ → ← :Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

On-Chip Primary PCI IDE
If this option is enabled, the primary IDE controller of the board can be used. If an ATAPI-CD-ROM drive is used and integrated with the secondary IDE channel, hard disk access is not slowed down.

IDE Primary Master PIO
PIO refers to the concept of programmed input and output. Instead of the BIOS issuing an instruction sequence for initiating a data transfer from or to the hard disk, PIO enables the BIOS to notify the controller what task should be executed. The task is then fully handled by the controller and the CPU. Your system supports five PIO modes, 0 (standard) to 4, with the main difference relating to timing. If "Auto" (automatic) is selected, the BIOS will assess your drive and automatically specify the optimum PIO mode. Auto: The BIOS automatically sets the system value depending on the timing of your hard disk drive. Mode 0-4: You can select a mode suitable for your hard drive.

IDE Primary Slave PIO
PIO refers to the concept of programmed input and output. Instead of the BIOS issuing an instruction sequence for initiating a data transfer from or to the hard disk, PIO enables the BIOS to notify the controller what task should be executed. The task is then fully handled by the controller and the CPU. Your system supports five PIO modes, 0 (standard) to 4, with the main difference relating to timing. If "Auto" (automatic) is selected, the BIOS will assess your drive and automatically specify the optimum PIO mode. Auto: The BIOS automatically sets the system value depending on the timing of your hard disk drive. Mode 0-4: You can select a mode suitable for your hard drive.

IDE Primary Master UDMA
This option is used to configure the Ultra-DMA/33 mode of your hard disk. Setting options: Auto, Enabled, Disabled. The option should be set to Enabled.

IDE Primary Slave UDMA
This option is used to configure the Ultra-DMA/33 mode of your hard disk. Setting options: Auto, Enabled, Disabled. The option should be set to Enabled.

IDE HDD Block Mode
This option is used to activate block mode for IDE hard disks. If your drive supports this mode and this option is activated, the system will read the number of blocks per request from the configuration sector of the hard disk. The recommended setting is Enabled, although it should be noted that this is not suitable for older hard disks.
Onboard Device
This menu is used for configuring the USB and audio interfaces.

Phoenix - AwardBIOS CMOS Setup Utility

Onboard Device

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Controller</td>
<td>[Enabled]</td>
</tr>
<tr>
<td>USB 2.0 Controller</td>
<td>[Enabled]</td>
</tr>
<tr>
<td>USB Keyboard Support</td>
<td>[Enabled]</td>
</tr>
<tr>
<td>USB Mouse Support</td>
<td>[Disabled]</td>
</tr>
<tr>
<td>AC97 Audio</td>
<td>[Auto]</td>
</tr>
<tr>
<td>Init Display First</td>
<td>[Onboard/AGP]</td>
</tr>
</tbody>
</table>

↑ ↓ → ← :Move Enter:Select +/-/UP/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

USB Controller
If the option is enabled, the system BIOS specifies the system resources (IRQs and addresses) to be used. If the option is disabled, the USB controller is switched off.

USB 2.0 Controller
The board contains a USB 2.0 chipset with support for USB 2.0. The option can be switched on or off here.

USB Keyboard Support
The USB keyboard driver (if available) of the BIOS can be activated/deactivated here. This enables the USB keyboard to be operated during and after system startup, if your operating system does not have a USB driver.

USB Mouse Support
Select Enabled if your system has a USB controller (Universal Serial Bus) and you are using a USB mouse. The following settings are available: Enabled, Disabled.

AC97 Audio
The onboard AC’97 audio controller can be switched on or off here. Setting options: Auto, Disabled.

Init Display First
This option can be used to specify which graphics card should be initialised first, i.e. either the card in the PCI slot or the AGP card. The setting options are “First PCI” or “OnboardAGP”.

SuperIO Device
This menu is used for configuring the USB and audio interfaces.

Phoenix - AwardBIOS CMOS Setup Utility
SuperIO Device

<table>
<thead>
<tr>
<th>Onboard Serial Port 1</th>
<th>[3F8/IRQ4]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onboard Serial Port 2</td>
<td>[2F8/IRQ3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UART Mode Select</td>
<td>[Normal]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RxD, TxD Active</td>
<td>Hi, Lo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR Transmission Delay</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UR2 Duplex Mode</td>
<td>Half</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use IR Pins</td>
<td>IR-Rx2Tx2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ → ← :Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

Onboard Serial Port 1
Configuration of the serial interface settings: IRQ4 (used for the first serial port), Disabled (no interrupt is used).
Setting options: Auto, 3F8/IRQ4, 2F8/IRQ4, 3E8/IRQ4 or 2E8/IRQ4.

Onboard Serial Port 2
Configuration of the serial interface settings: IRQ3 (used for the second serial port), Disabled (no interrupt is used).
Setting options: Auto, 3F8/IRQ3, 2F8/IRQ3, 3E8/IRQ3 or 2E8/IRQ3.

UART Mode Select
Mode for the serial interface driver. Setting options:
- Normal for RS-232 serial interface
- ASKIR for amplitude keyed shift interface for IR devices
- IrDA for IrDA interface

RxD, TxD Active
Settings cannot be changed in standard mode. This option is used for setting IR transmission/reception to High or Low.

IR Transmission Delay
If this option is activated, transmission is delayed. Setting options: Enabled, Disabled.

UR2 Duplex Mode
This option is used for configuring infrared devices. Setting options: Full or Half. Please refer to the IR device manual regarding the duplex mode setting.

Use IR Pins
This option is identical to the TxD, RxD Active option. The required information can be found in the documentation for your IR device.
Power Management Setup

This menu is used for power management settings.

Phoenix - AwardBIOS CMOS Setup Utility

Power Management Setup

<table>
<thead>
<tr>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPI Function</td>
<td></td>
</tr>
<tr>
<td>Power Management</td>
<td>[Enabled]</td>
</tr>
<tr>
<td>Video Off Method</td>
<td>[DPMS]</td>
</tr>
<tr>
<td>Video Off In Suspend</td>
<td>[Yes]</td>
</tr>
<tr>
<td>Suspend Type</td>
<td>[Stop Grant]</td>
</tr>
<tr>
<td>Modem Use IRQ</td>
<td>[3]</td>
</tr>
<tr>
<td>Suspend Mode</td>
<td>[Disabled]</td>
</tr>
<tr>
<td>HDD Power Down</td>
<td>[Disabled]</td>
</tr>
<tr>
<td>Wake-Up by PCI card</td>
<td>[Enabled]</td>
</tr>
<tr>
<td>Power On by Ring</td>
<td>[Enabled]</td>
</tr>
</tbody>
</table>

Reload Global Timer Events

Primary IDE 0	[Disabled]
Primary IDE 1	[Disabled]
Secondary IDE 0	[Disabled]
Secondary IDE 1	[Disabled]
FDD, COM, LPT Port	[Disabled]
PCI PIRQ[A-D]#	[Disabled]

↑ ↓ → ← :Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help

F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

ACPI Function

This option can be used for switching the ACPI (Advanced Configuration and Power Interface) functions on or off (if available). ACPI requires an operating system that recognises ACPI.

Power Management

Settings: Disabled (no energy saving function used), Min Saving (this setting is activated after 40 minutes and offers the lowest energy saving level), Max Saving (this setting offers the highest energy saving level).

Video Off Method

Here you can specify how the display is switched off. Since the monitor is one of the largest consumers, this important option should not be skipped. Most recent monitors come with VESA-DPMS capability (Display Power Management Signaling or Energy Star). Several options are available. Some monitors switch off automatically in the absence of a signal from the graphics card. In the absence of power management functionality, or if the other options are not used, the “blank screen” option may be used. DPMS should be set here. Setting options: Blank Screen, V/H Sync+Blank. DPMS should only be used for monitors without power management function.

Video Off In Suspend

This option offers two choices: Yes or No. This setting determines how the monitor is switched off.

Suspend Type

This option offers two choices: Stop Grant (the CPU is idle in energy-saving mode), and PwrOn Suspend (the CPU remains active in energy-saving mode).

Modem Use IRQ

This option is used for specifying the interrupt line (IRQ) of a modem (if present). Activity on this line causes the computer to ‘wake up’ in order to receive a fax, for example. Setting options: NA (no allocation), 3 (allocated), 4, 5, 7, 9, 10, 11
Suspend Mode
In User Define mode a hold time can be set here. The following values are available: Disable (off) 1 Min , 2 Min , 4 Min, 8 Min , 12 Min , 20 Min , 30 Min, 40 Min , 1 Hour. The setting in Min Saving mode is 1 minute. With Max Saving the hold time is set to 1 hour.

HDD Power Down
Here you can specify after which period of inactivity the hard disk is switched off. This option is only available for IDE hard disks. Settings: Disabled or 1 to 15 minutes. This option should be used with caution, since frequent switching on and off is more damaging to the hard disk than beneficial in terms of energy saving.

Wake-Up by PCI card
This option can be used to start your PC from another PC via a network by sending a wake-up frame or signal.

Power On by Ring
The system starts when the phone rings, if an external modem is connected to the onboard serial port.

Reload Global Timer Events

Primary IDE 0
If this option is enabled, the system activates the energy-saving timer if no activity is detected on the first drive of the first IDE/EIDE port. Setting options: Enabled, Disabled

Primary IDE 1
If this option is enabled, the system activates the energy-saving timer if no activity is detected on the second drive of the first IDE/EIDE port. Setting options: Enabled, Disabled.

Secondary IDE 0
If this option is enabled, the system activates the energy-saving timer if no activity is detected on the first drive of the second IDE/EIDE port. Setting options: Enabled, Disabled

Secondary IDE 1
If this option is enabled, the system activates the energy-saving timer if no activity is detected on the second drive of the second IDE/EIDE port. Setting options: Enabled, Disabled

FDD, COM, LPT Port
If one of these menu items is set to "Monitor", the AMI-BIOS monitors the IRQ of the respective connection or device (and therefore the connection or device itself) for activity while in energy-saving mode. If activity is detected, the system switches from the respective energy-saving mode to normal mode. The AMI-BIOS resets the standby and suspend idle time to zero if activity is detected on a specified IRQ.

PCI PIRQ[A-D]#
This option can be used to influence the power management timing. If the option is enabled, a countdown commences that is interrupted as soon as the INTA~INTD signal becomes active. The system is reset to zero.
PnP/PCI Configurations
This menu is used for configuring the PCI bus and Plug and Play Management.

Phoenix - AwardBIOS CMOS Setup Utility
PnP/PCI Configurations

<table>
<thead>
<tr>
<th>Reset Configuration Data</th>
<th>[Enabled]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources Controlled By</td>
<td>[Manual]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>► IRQ Resources</td>
<td>[Press Enter]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Memory Resources</td>
<td>[Press Enter]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI/VGA Palette Snoop</td>
<td>[Disabled]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ ← → :Move Enter:Select +/-PU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

Reset Configuration Data
If activated, the option ensures that the BIOS deletes the information relating to built-in components and their resources and reconfigures them (all settings are reset). Setting options: Enabled, Disabled.

Resources Controlled By
Specifies whether the PnP settings should be assigned via setup or automatically. Auto should be used, if there are no problems with IRQ or DMA assignments.

IRQ Resources
If these resources are set manually, each system interrupt should be assigned a type, depending on the type of device using the interrupt.

Memory Resources
If memory areas are to be protected for use by the operating system, an area can be set here.

PCI/VGA Palette Snoop
Used by multimedia video cards. This function should be switched on (Enabled), depending on the card. It is switched off by default.
IRQ Resources
This menu is used for disabling interrupts for free allocation to PCI slots.

Phoenix - AwardBIOS CMOS Setup Utility
IRQ Resources

<table>
<thead>
<tr>
<th>IRQ-n assigned to (n = {3,4,5,7,9,10,11,12,14,15})</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRQ-3 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
<tr>
<td>IRQ-4 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
<tr>
<td>IRQ-5 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
<tr>
<td>IRQ-7 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
<tr>
<td>IRQ-9 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
<tr>
<td>IRQ-10 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
<tr>
<td>IRQ-11 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
<tr>
<td>IRQ-12 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
<tr>
<td>IRQ-14 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
<tr>
<td>IRQ-15 assigned to</td>
<td>[PCI Device]</td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ → ← :Move Enter:Select +/-/FU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

This parameter is used for disabling (reserving) an interrupt for free allocation. If the setting [PCI Device] is used, the interrupt is allocated dynamically.
Memory Resources
This menu can be used to specify a memory area for peripherals. The area is precisely defined through a base address and length.

Phoenix – AwardBIOS CMOS Setup Utility
Memory Resources

<table>
<thead>
<tr>
<th>Reserved Base</th>
<th>[D000]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved Memory Length</td>
<td>[64K]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ ← → :Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

Reserved Base
Start address of the reserved area. N/A (not available), D000, D400, D800 or DC00 can be selected as addresses.

Reserved Memory Length
Size of the memory area in KB. 8K, 16K, 32K or 64K can be set.
PC Health Status
This menu is used for displaying the settings for CPU and motherboard temperatures, power supply, and fan speed.

Phoenix - AwardBIOS CMOS Setup Utility
PC Health Status

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. Board CX1020</td>
<td>51°C</td>
</tr>
<tr>
<td>Temp. CPU CX1020</td>
<td>70°C</td>
</tr>
<tr>
<td>Temp. Board CX1021</td>
<td>57°C</td>
</tr>
<tr>
<td>Temp. Board CX1021(*)</td>
<td>60°C</td>
</tr>
<tr>
<td>12V (*)</td>
<td>12.75V</td>
</tr>
<tr>
<td>+3.3 V (*)</td>
<td>3.39V</td>
</tr>
<tr>
<td>+5 V</td>
<td>5.29V</td>
</tr>
<tr>
<td>Fan1 Speed</td>
<td>0</td>
</tr>
<tr>
<td>Fan2 Speed</td>
<td>0</td>
</tr>
<tr>
<td>VBatt</td>
<td>3.24V</td>
</tr>
<tr>
<td>CX1020 Revision (*)</td>
<td>2</td>
</tr>
<tr>
<td>CX1021 Revision (*)</td>
<td>2</td>
</tr>
</tbody>
</table>

↑↓←→:Move Enter:Select +/-/PU/PD:Value F10:Save ESC:Exit F1:Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

Temp. Board CX1020
Temperature of the CX1020 motherboard. The maximum operating temperature is 80°C. A warning should be given, if temperature rises higher than 80°C. If the temperature rises higher than 85°C the system should be shut down. The position of the sensors is shown in diagram below.

Temp. CPU CX1020
Temperature of the CPU. The maximum operating temperature is 85°C. A warning should be given, if temperature rises higher than 85°C. If the temperature rises higher than 95°C the system should be shut down. The position of the sensors is shown in diagram below.

Temp. Board CX1021
Temperature sensor 1 on the CF board (CX1021) of the CX1020. The maximum operating temperature is 80°C. A warning should be given, if temperature rises higher than 80°C. If the temperature rises higher than 85°C the system should be shut down. The position of the sensors is shown in diagram below.

Temp. Board CX1021
Temperature sensor 2 on the CF board (CX1021) of the CX1020. The maximum operating temperature is 80°C. A warning should be given, if temperature rises higher than 80°C. If the temperature rises higher than 85°C the system should be shut down. The position of the sensors is shown in diagram below. (This sensor was build for internal use it could be used for as alternative to sensor 1)

12 V
Supply voltage, 12 V

+3.3 V
Supply voltage, 3.3 V

+5 V
Supply voltage, 5 V

Fan1 Speed
Speed of fan no. 1 (0 in this case, since no fan present)
Fan2 Speed
Speed of fan no. 2 (0 in this case, since no fan present)

VBatt
Battery voltage

CX1020 Revision
Hardware version of the CPU board

CX1021 Revision
Hardware version of the CF board

This diagram shows the positions if the temperature sensors:
Frequency/Voltage Control

In this menu the CLK setting for the PCI bus can be specified. Power supply tolerances can also be specified.

Phoenix – AwardBIOS CMOS Setup Utility
Frequency/Voltage Control

<table>
<thead>
<tr>
<th>Auto Detect PCI Clk</th>
<th>[Enabled]</th>
<th>Item</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread Spectrum</td>
<td>[Disabled]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ ↓ → ← : Move Enter: Select +/−/PU/PD: Value F10: Save ESC: Exit F1: Help
F5: Previous Values F6: Fail-Safe Defaults F7: Optimized Defaults

Auto Detect PCI CLK
This option prevents unused PCI and/or DIMM slots being addressed by the CLK generator. It also has an effect on the radiation characteristics.

Spread Spectrum
This setting should be left unchanged if possible. It should only be changed in the event of EMI problems. It enables electromagnetic interference to be reduced.
5. Error handling and diagnostics

CPU basic module

LEDs Basic CPU-Module

<table>
<thead>
<tr>
<th>Display</th>
<th>LED</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| | PWR | Power supply
The Power LED comes on when the device is connected to a live power supply unit. |
| | LAN 1 | LAN Link, (green)
LINK/ACTIVITY for switched LAN PORT 1 (CX1020-N000) |
| | LAN 2 | LAN Link, (green)
LINK/ACTIVITY for switched LAN PORT 2 (CX1020-N000) |
| | TC | TwinCAT Status LED
TwinCAT is in Run-Mode (green)
TwinCAT is in Config-Mode (blue)
(in HW revision < 2.0 the Config-Mode is displayed by blinking green) |
| | HDD | Read/Write Compact Flash (red)
Indicates access to the CF card. |
System interfaces

LEDs CF-card reader

<table>
<thead>
<tr>
<th>Display</th>
<th>LED</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| | PWR | Power supply
The Power LED comes on when the device is connected to a live power supply unit. |
| | LOCK| Lights up if a CF card is inserted correctly (physical and electrical). |
| | CF | Read/Write Compact Flash
Indicates access to the CF card. |
Power supply units

CX1100-0001 power supply LEDs

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
<td>The LED lights up green when the power supply is correct, but red if there is a short circuit.</td>
</tr>
</tbody>
</table>
CX1100-0002 power supply LEDs

After switching on, the power supply immediately checks the connected Bus Terminal configuration. Error-free start-up is signalled by the red "I/O ERR" LED being extinguished. If the "I/O ERR" LED blinks, an error in the area of the terminals is indicated. The error code can be determined from the frequency and number of blinks. This permits rapid rectification of the error.

<table>
<thead>
<tr>
<th>Display</th>
<th>LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>I/O</td>
<td>K-Bus diagnostics</td>
</tr>
<tr>
<td>Run</td>
<td>Error</td>
<td>K-Bus diagnostics</td>
</tr>
</tbody>
</table>

The I/O error LED blink code

<table>
<thead>
<tr>
<th>Fast blinking</th>
<th>Start of the error code</th>
</tr>
</thead>
<tbody>
<tr>
<td>First blinking</td>
<td>Error code</td>
</tr>
<tr>
<td>Second slow sequence</td>
<td>Error code argument</td>
</tr>
</tbody>
</table>

LEDs for K-Bus diagnosis

<table>
<thead>
<tr>
<th>Error code</th>
<th>Error code argument</th>
<th>Description</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent, continuous blinking</td>
<td></td>
<td>EMC problems</td>
<td>- Check power supply for overvoltage or undervoltage peaks - Implement EMC measures - If a K-Bus error is present, it can be localised by a restart of the power supply (by switching it off and then on again)</td>
</tr>
<tr>
<td>1 pulse</td>
<td>0</td>
<td>EEPROM checksum error</td>
<td>Revert to the manufacturer’s setting</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Code buffer overflow</td>
<td>Insert fewer Bus Terminals. The programmed configuration has too many entries in the table</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Unknown data type</td>
<td>Software update required for the power supply</td>
</tr>
<tr>
<td>2 pulses</td>
<td>0</td>
<td>Programmed configuration has an incorrect table entry</td>
<td>Check programmed configuration for correctness</td>
</tr>
<tr>
<td></td>
<td>n (n > 0)</td>
<td>Table comparison (Bus Terminal n)</td>
<td>Incorrect table entry</td>
</tr>
<tr>
<td>3 pulses</td>
<td>0</td>
<td>K-Bus command error</td>
<td>- No Bus Terminal inserted - One of the Bus Terminals is defective; halve the number of Bus Terminals attached and check whether the error is still present with the remaining Bus Terminals. Repeat until the defective Bus Terminal is located.</td>
</tr>
<tr>
<td>4 pulses</td>
<td>0</td>
<td>K-Bus data error, break behind the power supply</td>
<td>Check whether the n+1 Bus Terminal is correctly connected; replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>Break behind Bus Terminal n</td>
<td>Check whether the Bus End Terminal 9010 is connected.</td>
</tr>
<tr>
<td>5 pulses</td>
<td>n</td>
<td>K-Bus error in register communication with Bus Terminal n</td>
<td>Exchange the nth bus terminal</td>
</tr>
<tr>
<td>9 pulses</td>
<td>0</td>
<td>Checksum error in Flash program</td>
<td>Revert to the manufacturer’s setting</td>
</tr>
</tbody>
</table>
| | n (n>0) | Bus Terminal n is not | Revert to the manufacturer’s setting which will
Error handling and diagnostics

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 pulses</td>
<td>nth Bus Terminal has the wrong format</td>
<td>Start the power supply again, and if the error occurs again then exchange the Bus Terminal.</td>
</tr>
<tr>
<td>15 pulses</td>
<td>Number of Bus Terminals is no longer correct</td>
<td>Start the power supply up again.</td>
</tr>
<tr>
<td>16 pulses</td>
<td>Length of the K-Bus data is no longer correct</td>
<td>Start the power supply up again.</td>
</tr>
</tbody>
</table>

Error code argument
The number of pulses indicates the position of the last Bus Terminal before the fault. Passive Bus Terminals, such as a power feed terminal, are not included in the count.

In the case of some errors, rectification does not cause the power supply to leave the blink sequence. The power supply can only be restarted by switching its supply voltage off and on again.

Note:
The supply voltage of the power supply unit, which is necessary to supply power to the CX1000 system, must not be interrupted in the middle of operation. Switching off the supply voltage to the power supply unit refers here to the power supply on the power contacts.
CX1100-0003 power supply LEDs

After switching on, the power supply immediately checks the connected Bus Terminal configuration. Error-free start-up is signalled by the red "I/O ERR" LED being extinguished. If the "I/O ERR" LED blinks, an error in the area of the terminals is indicated. The error code can be determined from the frequency and number of blinks. This permits rapid rectification of the error.

<table>
<thead>
<tr>
<th>Display</th>
<th>LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>PWR</td>
<td>Power supply
The LED lights up green when the power supply is correct, but red if there is a short circuit.</td>
</tr>
<tr>
<td>I/O Run</td>
<td>IO RUN</td>
<td>K-Bus diagnostics
The green LED lights up in order to indicate fault-free operation. "Fault-free" means that the communication with the fieldbus system is also running.</td>
</tr>
<tr>
<td>I/O Error</td>
<td>IO ERR</td>
<td>K-Bus diagnostics
The red LED flashes to indicate an error. The red LED blinks with two different frequencies.</td>
</tr>
</tbody>
</table>

The I/O error LED blink code

<table>
<thead>
<tr>
<th>Fast blinking</th>
<th>Start of the error code</th>
</tr>
</thead>
<tbody>
<tr>
<td>First blinking</td>
<td>Error code</td>
</tr>
<tr>
<td>Second blinking</td>
<td>Error code argument</td>
</tr>
</tbody>
</table>

LEDs for K-Bus diagnosis

<table>
<thead>
<tr>
<th>Error code</th>
<th>Error code argument</th>
<th>Description</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Persistent, continuous blinking | | EMC problems | - Check power supply for overvoltage or undervoltage peaks
- Implement EMC measures
- If a K-Bus error is present, it can be localised by a restart of the power supply (by switching it off and then on again) |
| 1 pulse | | EEPROM checksum error | Revert to the manufacturer's setting |
| | | Code buffer overflow | Insert fewer Bus Terminals. The programmed configuration has too many entries in the table |
| | | Unknown data type | Software update required for the power supply |
| | | Programmed configuration has an incorrect table entry | Check programmed configuration for correctness |
| 2 pulses | | Table comparison (Bus Terminal n) | Incorrect table entry |
| | 0 | K-Bus command error | - No Bus Terminal inserted
- One of the Bus Terminals is defective; halve the number of Bus Terminals attached and check whether the error is still present with the remaining Bus Terminals. Repeat until the defective Bus Terminal is located. |
| | n (n > 0) | K-Bus data error, break behind the power supply | Check whether the n+1 Bus Terminal is correctly connected; replace if necessary. |
| | n | Break behind Bus Terminal n | Check whether the Bus End Terminal 9010 is connected. |
| 4 pulses | | K-Bus error in register communication with Bus Terminal n | Exchange the nth bus terminal |
| 5 pulses | | Checksum error in Flash program | Revert to the manufacturer's setting |
| 9 pulses | | Bus Terminal n is not | Revert to the manufacturer's setting which will
Error code argument

The number of pulses indicates the position of the last Bus Terminal before the fault. Passive Bus Terminals, such as a power feed terminal, are not included in the count.

In the case of some errors, rectification does not cause the power supply to leave the blink sequence. The power supply can only be restarted by switching its supply voltage off and on again.

Note:

The supply voltage of the power supply unit, which is necessary to supply power to the CX1000 system, must not be interrupted in the middle of operation. Switching off the supply voltage to the power supply unit refers here to the power supply on the power contacts.

<table>
<thead>
<tr>
<th>Pulses</th>
<th>Position</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>n</td>
<td>nth Bus Terminal has the wrong format</td>
<td>Start the power supply again, and if the error occurs again then exchange the Bus Terminal.</td>
</tr>
<tr>
<td>15</td>
<td>n</td>
<td>Number of Bus Terminals is no longer correct</td>
<td>Start the power supply up again.</td>
</tr>
<tr>
<td>16</td>
<td>n</td>
<td>Length of the K-Bus data is no longer correct</td>
<td>Start the power supply up again.</td>
</tr>
</tbody>
</table>
CX1100-0004 power supply LEDs

<table>
<thead>
<tr>
<th>Display</th>
<th>LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td></td>
<td>power supply</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The LED lights up green when the power supply is correct, but red if there is a short circuit.</td>
</tr>
<tr>
<td>L / A</td>
<td>off</td>
<td>E-Bus is not connected</td>
</tr>
<tr>
<td></td>
<td>on</td>
<td>E-Bus is connected / no data traffic on E-bus</td>
</tr>
<tr>
<td></td>
<td>blink</td>
<td>E-Bus is connected / data traffic on E-bus</td>
</tr>
<tr>
<td>RUN</td>
<td>off</td>
<td>Indicates the state of the EtherCAT bus:</td>
</tr>
<tr>
<td></td>
<td>blink</td>
<td>PRE-OPERATIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(frequency: 200 ms on / 200 ms off)</td>
</tr>
<tr>
<td></td>
<td>single flash</td>
<td>SAVE-OPERATIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(frequency: 200 ms on / 1000ms off)</td>
</tr>
<tr>
<td></td>
<td>on</td>
<td>OPERATIONAL</td>
</tr>
<tr>
<td></td>
<td>flickering</td>
<td>BOOTSTRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(frequency: 50 ms on / 50 ms off)</td>
</tr>
<tr>
<td></td>
<td>double flash</td>
<td>reserved for future use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(frequency: 200 ms on / 200 ms off / 200 ms an / 1000 ms off)</td>
</tr>
<tr>
<td></td>
<td>triple flash</td>
<td>reserved for future use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(frequency: 200 ms on / 200 ms off / 200 ms an / 200 ms off / 1000 ms off)</td>
</tr>
<tr>
<td></td>
<td>quadruple flash</td>
<td>reserved for future use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(frequency: 200 ms on / 200 ms off / 200 ms on / 1000 ms off)</td>
</tr>
</tbody>
</table>

The functions for L/A and RUN LED are available in hardware revision > 2.0. The LEDs have on function in older revisions.
Faults

Please also refer to the Safety instructions section.

Possible faults and their correction

If servicing is required, please quote the project number of your PC (on the type plate).

BECKHOFF support number:
for Germany: 05246/963-157
international: +49-5246/963-157

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>no function after the Embedded PC has been switched on</td>
<td>no power supply</td>
<td>1. Check fuse</td>
</tr>
<tr>
<td></td>
<td>other causes</td>
<td>2. Measure voltage at connection, check connector pin assignment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call Beckhoff support</td>
</tr>
<tr>
<td>Embedded PC does not boot fully</td>
<td>Hard disk damaged (e.g. due to switching off while software is running), incorrect setup, other causes</td>
<td>Check setup. Call Beckhoff support</td>
</tr>
<tr>
<td>Computer boots, software starts, but control does not operate correctly</td>
<td>Cause of the fault is either in the software or in parts of the plant outside the Embedded PC.</td>
<td>Call the manufacturer of the machine or the software.</td>
</tr>
<tr>
<td>CF card access error</td>
<td>faulty CF card, faulty CF slot</td>
<td>Use a different CF card to check the CF slot Call Beckhoff support</td>
</tr>
<tr>
<td>Embedded PC only works partially or temporarily</td>
<td>Defective components in the Embedded PC</td>
<td>Call Beckhoff support</td>
</tr>
</tbody>
</table>
6. Removal and disposal

Removal and disposal

A CX10x0 hardware configuration is dismantled in 2 stages:

0. Switching off and disconnecting the power supply
Before a CX10x0 system can be dismantled, the system should be switched off, and the power supply should be disconnected.

1. Removing from the top-hat rail:
Before the individual CX10x0 modules are disconnected, the whole CX1020 hardware block should be removed from the top-hat rail. Proceed as follows:

1.1. Release and remove the first Terminal next to the power supply unit on the top-hat rail.
First remove any wiring from power supply unit and then from the first terminal on the top-hat rail next to the power supply unit. If the wiring is to be reused for another system, it is advisable to make a note of the connections. Then pull the orange terminal release (see arrow) to release the terminal and pull it out.

1.2. Releasing the CX10x0 system
In order to release the CX10x0 block, pull the white straps at the bottom of the module in the direction of the arrows. They will lock in the extended position. After pulling the terminal release of the power supply unit, the block can be removed carefully from the top-hat rail.

2. Separating the individual modules

2.1. Separating the power supply unit, the CX10x0 CPU and other components
Place the CX10x0 block onto a suitable support with the front facing down. Then insert a flat screwdriver with dimensions 1.0 x 5.5 x 150 mm into the locking mechanism, and then operating the slider by turning it about 90
Removal and disposal

degrees. The locking mechanism on the rear affects an approx. 2-3 mm wide clearance of the module latching mechanism, pushing them apart. The plug connectors of the PC 104 interface can then be pulled apart carefully.

Only modules (CPU, fieldbus connections and UPS modules) that can be separated non-destructively feature a release device. Modules that cannot be separated only feature a marking point (with or without red paint seal). Applying force to these elements will destroy them.

Warning

Forcibly opening the module housing (e.g. removing the cover) will destroy the housing.

Disposal

The device must be fully dismantled in order to dispose of it.

Electronic parts must be disposed of in accordance with national electronics scrap regulations.
7. Appendix

Accessories

Compact flash cards

<table>
<thead>
<tr>
<th>order number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX1900-0021</td>
<td>512 MByte compact flash card type I</td>
</tr>
<tr>
<td>CX1900-0023</td>
<td>1 GByte compact flash card type I</td>
</tr>
<tr>
<td>CX1900-0025</td>
<td>2 GByte compact flash card type I</td>
</tr>
<tr>
<td>CX1900-0027</td>
<td>4 GByte compact flash card type I</td>
</tr>
</tbody>
</table>

Connectors and Adaptors

<table>
<thead>
<tr>
<th>order number</th>
<th>Description</th>
</tr>
</thead>
</table>
| CX1900-0101 | DVI-to-VGA passive Adaptor for connecting a standard desktop VGA monitor to the CX1000 system
| | – singles out the VGA signals of the DVI-I interface of the CX1000-N001 module
| | – 29-pin male DVI-A connector (bottom) to 15-pin female connector (top)
| | – weight approx. 40 g
| | – dimensions (W x H x D) 40 x 42 x 15 mm |

Labeling Tags

<table>
<thead>
<tr>
<th>order number</th>
<th>Description</th>
</tr>
</thead>
</table>
| CX1900-0200 | Universal plastic labels for the CX1000 system (package contains 1000 labels)
| | – snaps into the premoulded spots on the CX1000 components
| | – labeling can be done with a X-Y plotter
| | – dimension of the single label 15 x 5 mm
| | – material: white colored plastic
| | – Murrplastik type KMR 5/15, order number 86401014 |

replacement battery for CX1020-System

<table>
<thead>
<tr>
<th>order number</th>
<th>Description</th>
</tr>
</thead>
</table>
| on request | Battery for das CX1020-System
| | - original product description: Panasonic type CR2032 3V/225mAh |
Certifications

All products of the Embedded PC family are CE, UL and GOST-R certified. Since the product family is continuously developed further, we are unable to provide a full listing here. The current list of certified products can be found on the Embedded PC certificates web page or at www.beckhoff.de under Embedded PC.
Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you no only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- world-wide support
- design, programming and commissioning of complex automation systems
- and extensive training program for Beckhoff system components

<table>
<thead>
<tr>
<th>Hotline:</th>
<th>+49(0)5246/963-157</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fax:</td>
<td>+49(0)5246/963-9157</td>
</tr>
<tr>
<td>e-mail:</td>
<td>support@beckhoff.com</td>
</tr>
</tbody>
</table>

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- on-site service
- repair service
- spare parts service
- hotline service

<table>
<thead>
<tr>
<th>Hotline:</th>
<th>+49(0)5246/963-460</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fax:</td>
<td>+49(0)5246/963-479</td>
</tr>
<tr>
<td>e-mail:</td>
<td>service@beckhoff.com</td>
</tr>
</tbody>
</table>

You will find further support and service addresses on our Internet pages under http://www.beckhoff.com.

Beckhoff Headquarters

Beckhoff Automation GmbH
Eiserstr. 5
33415 Verl
Germany

<table>
<thead>
<tr>
<th>Phone:</th>
<th>+49(0)5246/963-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fax:</td>
<td>+49(0)5246/963-198</td>
</tr>
<tr>
<td>e-mail:</td>
<td>info@beckhoff.com</td>
</tr>
</tbody>
</table>

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.